
Section 4.3: Logarithms

As noted at the end of the Section 4.2 notes, we need a way to undo exponentia-
tion. We use subtraction to undo addition. We use division to undo multiplication.
We can use the nth root to undo raising something to the nth power. But if the
variable is in the exponent, we can’t use radicals to undo them. We have to define
something new to undo exponentiation in this way.

Definition. The logarithm of base a, denoted loga, is a function that undoes the
exponential function of base a. That is,

loga(x) = y means ay = x.

So to start, we can think of logarithms as a way to translate an exponential
equation into a different form.

Example 1.

• We know that 23 = 8. This means that log2(8) = 3.

• We know that 102 = 100. This means that log10(100) = 2.

• We know that 3−2 = 1
9 . This means that log3

(
1
9

)
= −2.

• We know that 161/2 = 4. This means that log16(4) = 1
2 .

• Since a0 = 1 no matter what a is, we also have that loga(1) = 0 no matter
what a is.

From this last item, we see that we can use some of the properties of exponen-
tial functions to get properties of logarithms. In particular, we get the following
properties:

(a) loga(x) is defined for any a > 0 with a 6= 1, and any x > 0. We can not
make sense of loga if a ≤ 0. We say that loga(x) is undefined if x ≤ 0.

(b) For any base a, loga(1) = 0.

(c) For any base a, loga(a) = 1.

(d) For any base a and any real number r, we have that loga(ar) = r.

(e) For any base a and any x > 0, we have that aloga(x) = x.

These last two properties really illustrate how logarithms and exponential func-
tions undo each other. That is, if f(x) = ax and g(x) = loga(x), we have that
f(g(x)) = x and that g(f(x)) = x. This is what it means for two functions to be
inverses of each other. We’ll use this to solve exponential and logarithmic equations
in Section 4.4.
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For now, let’s get some more properties of logarithmic functions as functions
themselves. First, since loga(x) is undefined when x ≤ 0, this tells us that the
domain of loga is the interval (0,∞). Note that this gives us another domain re-
striction to worry about! We should place “we can’t take a log of a negative number
or 0” on the list of domain restrictions beside “we can’t divide by 0” and “we can’t
take the square root of a negative number”.

Since logarithms and exponential functions undo each other, it makes sense that
their graphs would be related. In particular, if the point (x, y) is on the graph of
f(x) = ax, then the point (y, x) is on the graph of g(x) = loga(x). This means that
the graph of loga is a sort of “mirror image” of the graph of ax, reflected through
the diagonal line y = x. Under this reflection, horizontal lines get reflected to
vertical lines, so the horizontal asymptote that ax has at y = 0 becomes a vertical
asymptote at x = 0. Below is the graph of f(x) = loge(x).

Recall that as the base a increases, that meant that the graph of ax becomes steeper.
Translating that property to the reflection, it means that the graph of loga(x) be-
comes less steep as the base a increases.

The same important bases that we mentioned in Section 4.1 are still important
here: 10, 2, and e. The importance of base 2 is still largely confined to computer
science or other technical uses. Using the base 10 used to be extremely important,
since before the creation of mechanical calculators or computers, many difficult
calculations were done by converting to log10. In particular, this is how slide rules
were used to do math a century ago. It was so widely used that it became short-
hand to just say log to specifically mean log10. Your calculator today still may
have a button that just says “log”, and that button computes log10. Although
log10 has become a less crucial part of computational mathematics now that we use
calculators instead of slide rules, it is still used in some areas of math for things
like presenting data.

But by far, the most useful base of a logarithm is e, and we will use a special
notation for it.
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Definition. The logarithm with base e is called the natural logarithm, denoted by
ln. That is, ln(x) = loge(x).

Your calculator likely has a button that says “ln”. You can use it to make
computations involving the natural logarithm.

Example 2. Using a calculator, we find that ln(462) is approximately 6.135564891.
We’ll usually round to an appropriate number of decimals. This means that
e6.1356 ≈ 462. You can also check this on your calculator.

We’ve already translated a couple properties of exponentiation into properties
of logarithms. Let’s recall three more important properties of exponentiation and
see what they tell us about logarithms.

Rules of Exponentiation

• If we multiply two exponential expressions with the same base, then the
exponents add. That is, axay = ax+y.
• If we divide two exponential expressions with the same base, then the ex-

ponents subtract. That is,
ax

ay
= ax−y.

• If we raise an exponential expression to another power, the exponents mul-
tiply. That is, (ax)y = axy.

We then translate these to get product, quotient, and power properties for loga-
rithms. I call these our “log laws”.

Log Laws

• loga(xy) = loga(x) + loga(y)

• loga

(
x

y

)
= loga(x)− loga(y)

• loga(xr) = r loga(x)

To restate these in words, we have that the log of a product is the sum of the
logs (so logarithms turn multiplication into addition). We have that the log of a
quotient is the difference of the logs (so logarithms turn division into subtraction).
And we have that the log of a power is the product of the power with the log (so
logs turn exponentiation into multiplication).

Example 3. Compute log2(48)− log2(3).

Answer. Note that at this point, we can’t yet compute either log2(48) or log2(3)
on their own, since neither 48 nor 3 is a power of 2 that we know. However, using
the second log law, we see that

log2(48)− log2(3) = log2

(
48

3

)
= log2(16) = 4.

Thus, log2(48)− log2(3) = 4.
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We can do the same process we did in the previous example using variables
instead of numbers.

Example 4. Write the following as a single logarithm expression:

2 log3(x) + log3(x + 1)− 3 log3(y).

Answer. To start, we use the third log law to put the constant multiples inside
the logs as exponents. That is, we get

log3(x2) + log3(x + 1)− log3(y3).

Then we can use the first two log laws to combine these, and we get

log3(x2) + log3(x + 1)− log3(y3) = log3

(
x2(x + 1)

y3

)
.

So, log3

(
x2(x + 1)

y3

)
is a single logarithmic expression that is equal to the original

sum and difference of expressions.

We can also use this in reverse, to expand out a single logarithmic expression as
a sum or difference of simpler logarithmic expressions.

Example 5. Use the log laws to expand out the expression ln

(
x2y

4
√
z

)
in a form

with no logarithm of a product, quotient, or power.

Answer. The most important thing to be careful about here is to pay attention to
which variables are getting hit by which exponents. A common mistake is to pull
an exponent out incorrectly due to a misuse of the third log law. For that reason, I
always recommend that you save the third log law for last when you are expanding
an expression like this. So lets start with the second log law, and get rid of the
division by rewriting it as subtraction of the logs.

ln

(
x2y

4
√
z

)
= ln(x2y)− ln(4

√
z).

Next, we can replace every product inside a log with a sum of logs. That is, we can
write

ln(x2y) = ln(x2) + ln(y) and ln(4
√
z) = ln(4) + ln(

√
z).

We might also notice that 4 = 2× 2, so we can write ln(4) = ln(2) + ln(2).

Now, none of the individual logs remaining has any multiplication or division hap-
pening inside the parentheses, except for exponentiation. So we can use the third
log law now when it applies. We have that

ln(x2) = 2 ln(x) and that ln(
√
z) = ln

(
z1/2

)
=

1

2
ln(z).
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Finally, let’s put it all together.

ln

(
x2y

4
√
z

)
= ln(x2y)− ln(4

√
z)

= (ln(x2) + ln(y))− (ln(4) + ln(
√
z))

= (ln(x2) + ln(y))− (ln(2) + ln(2) + ln(
√
z))

= (ln(x2) + ln(y))− (2 ln(2) + ln(
√
z))

= ln(x2) + ln(y)− 2 ln(2)− ln(
√
z)

= 2 ln(x) + ln(y)− 2 ln(2)− 1

2
ln(z)

This is the answer we want.

As we can see, the log laws let go back and forth between having a single log
with a complex expression inside and having a complex combination of many simple
logs. Both are useful in different situations, so it’s important to be able to freely
go between both.

In Example 3, we noted that we don’t yet know how to compute log2(48) or log2(3).
While your calculator has a button for ln and a button for log10 (which is just de-
noted as LOG on the calculator), most calculators don’t have a button for log2, or
log5, or log4.318. We want to be able to get decimal estimates for these numbers
somehow.

The answer is to use the calculator buttons we DO have, and a bit of trickery
using the log laws. Let’s say we want to compute log2(3). I’ll use the letter y to
denote this unknown number for now. That is, y = log2(3).

But then we can rewrite this statement as an exponent statement. That is, 2y = 3.

Now, we apply a log to both sides that we can compute with our calculator. So
I’ll use ln, but we could also use log10 here instead. This gives us that ln(2y) = ln(3).

But now we can use our third log law on the left to pull the exponent out as a
multiple. In other words, ln(2y) = y ln(2). Therefore, y ln(2) = ln(3).

But now we can solve this for y, and we find that y =
ln(3)

ln(2)
. But we can get

decimal expansions for both numerator and denominator using our calculator! In
particular,

y = log2(3) =
ln(3)

ln(2)
=

1.098612289

0.6931471806
= 1.5849625.

This is how we get the change of base formula.

Change of Base Formula

For any base a, we have that loga(x) =
ln(x)

ln(a)
.
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Now, we can use our calculator to compute any logarithm that we want with a
high level of precision.

Example 6. Compute log16(10).

Answer. Using the change of base formula,

log16(10) =
ln(10)

ln(16)
=

2.302585093

2.772588722
= 0.830482.

SUMMARY:

• A logarithm of base a “undoes” an exponential expression of base a. That
is, loga(x) = y and ay = x mean the same thing.

• The function f(x) = loga(x) has a domain of (0,∞). That is, we can’t take
a logarithm of a negative number or zero, no matter what the base is.

• Laws of Logarithms help us rewrite logarithm expressions in either an ex-
panded out form or a single log form, depending on what we need.

• We denote the logarithm with base e with the notation ln, and can use the
calculator button for ln in our computations.

• We can use the change of base formula to compute any logarithm using our
calculator.
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