1. Simplify the expression $\left(\frac{2x^3y^{-1}}{y^2}\right)^{-2}$ by eliminating any negative exponents.

2. Write the expression $\frac{\sqrt[3]{8x^2}}{\sqrt{x}}$ using rational exponents and simplify.

- 3. Write the expression $\frac{8}{\sqrt[3]{x^2}}$ with a rational denominator.
- 4. Find the product (x+3y)(2x-y) and simplify.
- 5. Find the product $(x+2)(x^2+2x+3)$ and simplify.
- 6. Factor $3x^3 x^2 12x + 4$ completely.
- 7. Factor $8x^2 + 10x + 3$ completely.
- 8. Factor $6x^2 5x 6$ completely.

9. Compute $\frac{x^2 + x - 6}{x^2 + 4x - 12} \div \frac{x + 3}{x - 1}$ and write your answer in lowest terms.

10. Compute $\frac{4x}{x+2} - \frac{2+3x}{x+2}$ and write your answer in lowest terms.

11. Compute $\frac{2x}{x^2 - 16} - \frac{3}{x^2 + 8x + 16}$ and write your answer in lowest terms.

12. Solve the equation 6 - 4x = 10.

Name (Print):

13. Find the distance between the points (6, -2) and (-4, 5).

14. Find the midpoint of the segment that joins the points (5, -1) and (3, 5).

15. Find an equation of the circle of radius 5 centered at (-2, 3).

16. Find the center and radius of the circle with equation $x^2 + (y-2)^2 = 36$.

17. Find the center and radius of the circle with equation $x^2 + y^2 + 6y + 2 = 0$.

18. Find an equation of the line with slope 7 that passes through (4, -1).

19. Find an equation of the line that passes through (6, 2) and (-4, 3).

20. Find an equation of the line that passes through (3, -1) that is parallel to y = 6x + 1.

21. Find an equation of the line that passes through (1,1) that is perpendicular to 2x + y = 4.

22. Find all real and complex solutions to $x^2 + 14x = 32$.

23. Find all real and complex solutions to $2x^2 + 6x - 5 = 0$.

24. Find all real and complex solutions to $3x^2 - 2x + 1 = 0$.

- 25. Find all real solutions to $\frac{6}{x^2 1} \frac{3}{2} = \frac{3}{x 1}$.
- 26. Find all real solutions to $\frac{2}{x+3} + \frac{3}{8} = \frac{5}{4x+12}$.

27. Find all real solutions to $x^6 - 2x^3 - 3 = 0$.

- 28. Find all real solutions to $x^{3/2} 10x^{1/2} + 25x^{-1/2} = 0$.
- 29. Find all real solutions to $x^2\sqrt{x+3} = (x+3)^{3/2}$.
- 30. Find all real solutions to $x^5 x^3 2x = 0$.
- 31. Solve the inequality 2 5x < 7.
- 32. Solve the inequality $-4 < 2x 4 \leq -2$.
- 33. Solve the equation |8 3x| = 1.
- 34. Solve the inequality $|4x + 1| \ge 21$.
- 35. Solve the inequality $x^2 + 5x + 6 > 0$.
- 36. Solve the inequality $2x^2 + x \ge 1$.
- 37. Solve the inequality $(x-2)^2(x+1)(x+3) < 0$.

38. Solve the inequality $\frac{x^2 - 9}{x^3 + x^2 - 4x - 4} > 0.$

39. Consider the function $f(x) = x^2 - 4x$. Evaluate f(x - 3) and simplify.

40. Find the domain of the function $f(x) = \sqrt{4 - x^2}$.

41. Find the domain of the function $f(x) = \frac{x-1}{x^2+3x-10}$

42. Find the domain of the function $f(x) = \frac{5x}{\sqrt{x-1}}$.

43. Find the average rate of change of the function $f(x) = 6x - x^2$ from x = 1 to x = 4.

44. If $f(x) = 3\sqrt{x-4}$ and $g(x) = x^2 - 1$, find the formula for $(f \circ g)(x)$.

45. If $f(x) = 3\sqrt{x-4}$ and $g(x) = x^2 - 1$, find the formula for $(g \circ f)(x)$.

46. If $f(x) = 13x^{5/3} - 1$, find the formula for $f^{-1}(x)$.

47. If $f(x) = \frac{2x+1}{3x-7}$, find the formula for $f^{-1}(x)$.

48. Sketch a graph of the function $f(x) = (x+1)^2 - 3$.

49. Sketch a graph of the function f(x) = 3 |x - 1| + 2.

50. Sketch a graph of the function $f(x) = \frac{1}{3}\sqrt{x+2}$.

Consider the following graph of a function, y = f(x).

51. Find the domain of f.

- 52. Find, approximately, the range of f.
- 53. Find, approximately, the intervals where f is increasing.
- 54. Find, approximately, the intervals where f is decreasing.
- 55. Find, approximately, the intervals on which f(x) > 0.

56. Find the approximate coordinates of any local maxima of f.

- 57. Find the approximate coordinates of any local minima of f.
- 58. Is f a one-to-one function?
- 59. Sketch the graph of y = f(2 x) + 1.

- 60. Write the standard form of the quadratic function $f(x) = 2x^2 8x + 4$.
- 61. Find the coordinates of the vertex of the graph of $y = x^2 5x + 2$.
- 62. Find the maximum or minimum value of $f(x) = 3x^2 8x + 4$.
- 63. Determine the end behavior of the function $f(x) = 3x^4 4x^3 10x 1$.
- 64. Consider the function $f(x) = x^4 + x^3 2x^2$. Find all real zeros of f, state their multiplicities, and sketch the graph of f.
- 65. Consider the function $f(x) = x x^3$. Final all real zeros of f and their multiplicities, determine the end behavior of f, and sketch the graph of f.
- 66. Find the quotient and remainder of the division $\frac{x^4 2x^2 + 7x}{x^2 x + 3}$.
- 67. Find the quotient and remainder of the division $\frac{x^2 5x + 4}{x 3}$.
- 68. Let $f(x) = x^5 2x^4 9x^3 + 22x^2 + 4x 24$. Suppose that you know that 2 is a zero of f of multiplicity 3. Use this information to completely factor f.
- 69. Find a polynomial of degree 3 with integer coefficients and zeros at $\frac{1}{2}$, -1, and 2.
- 70. Let $f(x) = \frac{1}{(x+2)^2}$. Find all zeros of f, vertical asymptotes of f, and horizontal asymptotes of f. Find the behavior of the graph near the vertical asymptotes, and use this to sketch a graph of f.
- 71. Let $f(x) = \frac{x^2 1}{x^2 2x 8}$. Find all zeros of f, vertical asymptotes of f, and horizontal asymptotes of f. Find the behavior of the graph near the vertical asymptotes, and use this to sketch a graph of f.
- 72. Find the slant asymptote of $f(x) = \frac{x^3 + 3x + 4}{x^2 3x 3}$.

- 73. Let $f(x) = 4e^{4-x}$. Use a calculator to find f(-1), rounded to three decimal places.
- 74. Write the equation $\log_6(36) = 2$ in exponential form.
- 75. Write the equation $4^x = 20$ in logarithmic form.
- 76. Let $f(x) = 7 \log_3(x+2)$. Use the change of base formula and a calculator to find f(2), rounded to three decimal places.
- 77. Find the domain of the function $f(x) = \ln(8 2x)$.

78. Find the domain of the function $f(x) = \frac{1}{\log_2(x)}$.

79. Use the log laws to expand $\log_3\left(\frac{(x+4)\sqrt{2x}}{(x+1)^7}\right)$.

- 80. Write as a single logarithm using the log laws: $\ln(4x) 2\ln(x-1) 6\ln(x+2)$.
- 81. Sketch the graph of $f(x) = 3^x 4$.
- 82. Sketch the graph of $f(x) = \log_2(x+3)$.
- 83. Solve the equation $3^{x-4} = 27$.
- 84. Solve the equation $e^{4x} + 4 = 9$.
- 85. Solve the equation $2^{2x} 2^x 12 = 0$.
- 86. Solve the equation $4^{5x-3} = 3^{4x-5}$.
- 87. Solve the equation $\log_{10}(2x 3) + 1 = 0$.
- 88. Solve the equation $\log_3(x^2 4) + \log_3(x) = \log_3(x 2)$.
- 89. Solve the equation $\log_8(x+5) \log_8(x-2) = 1$.

- 90. Find two integers whose sum is 4542 and whose product is 1366632.
- 91. A field's perimeter is 72 feet and its length is 8 feet more than its width. What are the dimensions of the field?
- 92. An apartment has a rectangular bedroom with an area of 228 ft^2 that is 7 ft longer than it is wide. What is the width of the room?
- 93. A large box has a volume of 180 ft^3 . Its length is 9 ft greater than its height, and its width is 4 ft less than its height. What are the dimensions of the box?
- 94. You invest \$500 into an account with an annual interest rate of 8% that compounds monthly. How much money will be in your account after 2 years?
- 95. You invest \$800 into an account with an annual interest rate of 10% that compounds continuously. How much money will be in your account after 3 years?
- 96. You and your friend are each investing \$1000 into bank accounts. Your account has an annual interest rate of 6% and compounds continuously. Your friend's account compounds monthly, but you don't know the interest rate. At the end of 1 year, you end up with the exact same amount of money in your account as your friend has in her account. Find the annual interest rate of your friend's account.
- 97. Solve the system of equations

$$\begin{cases} x - 2y = 7\\ 2x + 3y = -5 \end{cases}$$

98. Solve the system of equations

$$\begin{cases} x - 3y + z = -1\\ 2x + 2y - 3z = 14\\ 2z = -8 \end{cases}$$

99. Solve the system of equations

$$\begin{cases} x^2 - 2y = 6\\ 2x^2 + 8y^2 = 32 \end{cases}$$