- 1. Convert the angle  $160^{\circ}$  to radians.
- 2. Convert the angle  $\frac{\pi}{18}$  to degrees.
- 3. Find an angle between 0 and  $2\pi$  that is coterminal to  $-\frac{19\pi}{7}$ .
- 4. Find the reference angle of  $-\frac{19\pi}{7}$ .
- 5. If  $\theta$  is an angle such that  $\sin \theta < 0$  and  $\tan \theta > 0$ , in what quadrant must  $\theta$  lie?
- 6. A circle with a radius 4 has a sector with central angle 30°. Find the area of this sector.
- 7. A circle with radius 3 has a sector with area  $6\pi$ . Find the length of the arc surrounding this sector.
- 8. What is the domain of the function  $f(x) = \sin^{-1}(x)$ ?
- 9. What is the range of the function  $f(x) = \cos^{-1}(x)$ ?
- 10. What is the range of the function  $f(x) = \tan^{-1}(x)$ ?
- 11. What is the amplitude of the function  $f(x) = 3\cos(7x 2) + 5$ ?
- 12. What is the period of the function  $f(x) = 3\cos(7x 2) + 5$ ?

The following questions are based on a triangle of this form:



13. If b = 3 and c = 4, find a.

14. If a = 5 and c = 7, find  $\tan \theta$ .

15. If a = 4 and  $\theta = 45^{\circ}$ , find c.

16. If b = 1 and c = 2, find the value of  $\theta$ .

17. If b = 1 and c = 3, find the area of the triangle.

In these problems, you are given three parts of an oblique triangle, where side a is opposite angle A, side b is opposite angle B, and side c is opposite angle C. In each problem, follow the instructions to give the desired information.

18. Suppose that  $A = 30^{\circ}$ ,  $C = 80^{\circ}$ , and b = 10. Find the length of side a.

19. Suppose that  $A = 40^{\circ}$ ,  $B = 70^{\circ}$ , and a = 2. Find the length of side b.

20. Suppose that a = 8, b = 10, and c = 12. Find the measure of angle A.

21. Suppose that  $A = 120^{\circ}$ , b = 8, c = 2. Find the length of side a.

22. Suppose that  $A = 35^{\circ}$ , b = 2, c = 7. Find the area of the triangle.

23. Suppose that  $A = 25^{\circ}$ , a = 12, and c = 23. How many possible solutions are there to this triangle?



24. On the grid below, sketch the graphs of  $f(x) = 2\sin(3x)$  and  $g(x) = \frac{1}{2}\cos(2x)$ .

- 25. Review what the graphs of tan(x), cot(x), sec(x), and csc(x) look like. (For example, redo the graph-matching problem from Exam 1.)
- 26. Consider each of the following angles, expressed with inverse trig functions. Determine the quadrant of each angle.
  (a) sin<sup>-1</sup>(-<sup>2</sup>/<sub>3</sub>)

(b)  $\tan^{-1}(-\frac{2}{3})$ 

(c)  $\cos^{-1}(-\frac{2}{3})$ 

- 27. For each of the following, find the exact value of the expression (that is, a rounded answer from your calculator will NOT be good enough).
  (a) sin<sup>-1</sup>(sin(<sup>2π</sup>/<sub>3</sub>))
  - (b)  $\tan(\tan^{-1}(-4))$
  - (c)  $\csc(\sin^{-1}(0))$
  - (d)  $\sin(\tan^{-1}(-1))$
- 28. Verify the identity  $(1 \tan x)(1 \cot x) = 2 \sec x \csc x$ .
- 29. Verify the identity  $\frac{\sin 2x}{\sin x} \frac{\cos 2x}{\cos x} = \sec x.$
- 30. Verify the identity  $(\cos x + \cos y)^2 + (\sin x \sin y)^2 = 2 + 2\cos(x+y)$ .
- 31. Use a half-angle formula to find the exact value of tan 15°. (A rounded answer from your calculator will NOT be good enough.)
- 32. Use a half-angle formula to find the exact value of  $\cos \frac{\pi}{8}$ . (A rounded answer from your calculator will NOT be good enough.)
- 33. Write the expression  $\csc(\tan^{-1} x)$  as an algebraic expression in terms of x.
- 34. Write the expression  $\tan(\cos^{-1} x)$  as an algebraic expression in terms of x.
- 35. Write the expression  $\cos(\sin^{-1} x + \cos^{-1} y)$  as an algebraic expression in terms of x and y.
- 36. Write the expression  $\sin(2\tan^{-1} x)$  as an algebraic expression in terms of x.

- 37. Solve the equation  $4\cos\theta = 1$ .
- 38. Solve the equation  $\cos\theta\sin\theta \cos\theta = 0$ .
- 39. Solve the equation  $\sin \theta = \cos 2\theta$ .
- 40. Let z = 1 + i, let  $w = 1 \sqrt{3}i$ . (a) Write z and w in polar form.
  - (b) Compute zw.
  - (c) Compute  $(zw)^7$ .
  - (d) Compute  $\frac{z^2}{w^3}$ .
- 41. Consider the point  $P = (-\sqrt{6}, \sqrt{2})$  in rectangular coordinates. Convert P to polar coordinates.
- 42. Consider the point  $Q = (3, \pi/6)$  in polar coordinates. Convert Q to rectangular coordinates.
- 43. Using the variables x and y, convert the polar equation  $r = 6 \sec \theta$  to rectangular coordinates.
- 44. Using the variables x and y, convert the polar equation  $r = 2\cos\theta$  to rectangular coordinates.
- 45. Using the variables x and y, convert the polar equation  $r = 1 + \cos \theta$  to rectangular coordinates.

- 46. Consider the vector v = ⟨7, -2⟩, and let u be the vector with magnitude √8 and direction 135°.
  (a) Write v in terms of i and j.
  - (b) Compute the magnitude of **v**.
  - (c) Compute the direction of **v**.
  - (d) Write **u** in component form.
  - (e) Compute the dot product  $\mathbf{u} \cdot \mathbf{v}$ .
  - (f) Compute the angle between  $\mathbf{u}$  and  $\mathbf{v}$ .
  - (g) Compute the vector  $9\mathbf{u} + 4\mathbf{v}$  in component form.
  - (h) Determine whether  $9\mathbf{u} + 4\mathbf{v}$  is orthogonal to  $\mathbf{u}$ .
  - (i) Calculate the component of **u** along **v**.
  - (j) Calculate the projection of  $\mathbf{u}$  onto  $\mathbf{v}$ ,  $\operatorname{proj}_{\mathbf{v}}\mathbf{u}$ .
- 47. Write an equation for the parabola with vertex at the origin whose focus is the point (0, -2).
- 48. Write an equation for an ellipse centered at the origin that has a focus at (1,0) and a vertex at (3,0).
- 49. Write an equation for a hyperbola centered at the origin that has a focus at (0,1) and asymptotes at y = 2x and y = -2x.

- 50. Suppose a parabola has the equation  $y^2 = 8x$ . Find the focus and the directrix of this parabola.
- 51. Suppose an ellipse has the equation  $4x^2 + 25y^2 = 100$ . Find the foci of this ellipse and the length of its major axis.
- 52. Suppose a hyperbola has the equation  $16x^2 4y^2 = 64$ . Find the foci, vertices, and asymptotes of this hyperbola.
- 53. To estimate the height of a mountain above a level plain, the angle of elevation to the top of the mountain is measured to be 32°. One thousand feet closer to the mountain along the plain, it is found that the angle of elevation is 35°. Find the height of the mountain, to the nearest foot.
- 54. A 96-ft tree casts a shadow that is 120 ft long. What is the angle of elevation of the sun?
- 55. The Leaning Tower of Pisa leans 5.6° from the vertical. A tourist stands 105 m from its base with the tower leaning directly towards her. She measures the angle of elevation to the top of the tower to be 29.2°. Find the length of the tower, to the nearest meter.
- 56. A pilot heads his jet due east. The jet has a speed of 425 miles per hour relative to the air. The wind is blowing due north with a speed of 40 miles per hour. Find the true velocity of the jet as a vector.
- 57. A lawn mower is pushed a distance of 200 ft along a horizontal path by a constant force of 50 lb. The handle of the lawn mower is at an angle of 30° from the horizontal. Find the work done.