- 1. Convert the angle 160° to radians.
- 2. Convert the angle $\frac{\pi}{18}$ to degrees.
- 3. Find an angle between 0 and 2π that is coterminal to $-\frac{19\pi}{7}$.
- 4. Find the reference angle of $-\frac{19\pi}{7}$.
- 5. If θ is an angle such that $\sin \theta < 0$ and $\tan \theta > 0$, in what quadrant must θ lie?
- 6. A circle with a radius 4 has a sector with central angle 30°. Find the area of this sector.
- 7. A circle with radius 3 has a sector with area 6π . Find the length of the arc surrounding this sector.
- 8. What is the domain of the function $f(x) = \sin^{-1}(x)$?
- 9. What is the range of the function $f(x) = \cos^{-1}(x)$?
- 10. What is the range of the function $f(x) = \tan^{-1}(x)$?
- 11. What is the amplitude of the function $f(x) = 3\cos(7x 2) + 5$?
- 12. What is the period of the function $f(x) = 3\cos(7x 2) + 5$?

The following questions are based on a triangle of this form:

13. If b = 3 and c = 4, find a.

14. If a = 5 and c = 7, find $\tan \theta$.

15. If a = 4 and $\theta = 45^{\circ}$, find c.

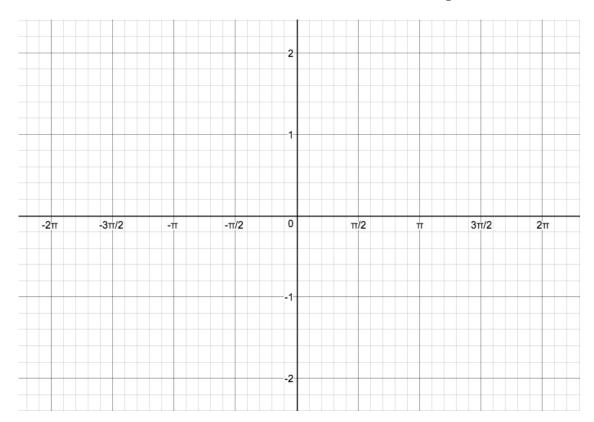
16. If b = 1 and c = 2, find the value of θ .

17. If b = 1 and c = 3, find the area of the triangle.

In these problems, you are given three parts of an oblique triangle, where side a is opposite angle A, side b is opposite angle B, and side c is opposite angle C. In each problem, follow the instructions to give the desired information.

18. Suppose that $A = 30^{\circ}$, $C = 80^{\circ}$, and b = 10. Find the length of side a.

19. Suppose that $A=40^{\circ}$, $B=70^{\circ}$, and a=2. Find the length of side b.


20. Suppose that a = 8, b = 10, and c = 12. Find the measure of angle A.

21. Suppose that $A = 120^{\circ}$, b = 8, c = 2. Find the length of side a.

22. Suppose that $A = 35^{\circ}$, b = 2, c = 7. Find the area of the triangle.

23. Suppose that $A=25^{\circ}$, a=12, and c=23. How many possible solutions are there to this triangle?

24. On the grid below, sketch the graphs of $f(x)=2\sin(3x)$ and $g(x)=\frac{1}{2}\cos(2x)$.

- 25. Review what the graphs of tan(x), cot(x), sec(x), and csc(x) look like. (For example, redo the graph-matching problem from Exam 1.)
- 26. Consider each of the following angles, expressed with inverse trig functions. Determine the quadrant of each angle. (a) $\sin^{-1}(-\frac{2}{3})$

(b)
$$\tan^{-1}(-\frac{2}{3})$$

(c)
$$\cos^{-1}(-\frac{2}{3})$$

27. For each of the following, find the exact value of the expression (that is, a rounded answer from your calculator will NOT be good enough).

(a)
$$\sin^{-1}(\sin(\frac{2\pi}{3}))$$

- (b) $\tan(\tan^{-1}(-4))$
- (c) $\csc(\sin^{-1}(0))$
- $(d) \sin(\tan^{-1}(-1))$
- 28. Verify the identity $(1 \tan x)(1 \cot x) = 2 \sec x \csc x$.
- 29. Verify the identity $\frac{\sin 2x}{\sin x} \frac{\cos 2x}{\cos x} = \sec x$.
- 30. Verify the identity $(\cos x + \cos y)^2 + (\sin x \sin y)^2 = 2 + 2\cos(x + y)$.
- 31. Use a half-angle formula to find the exact value of $\tan 15^{\circ}$. (A rounded answer from your calculator will NOT be good enough.)
- 32. Use a half-angle formula to find the exact value of $\cos \frac{\pi}{8}$. (A rounded answer from your calculator will NOT be good enough.)
- 33. Write the expression $\csc(\tan^{-1} x)$ as an algebraic expression in terms of x.
- 34. Write the expression $\tan(\cos^{-1} x)$ as an algebraic expression in terms of x.
- 35. Write the expression $\cos(\sin^{-1} x + \cos^{-1} y)$ as an algebraic expression in terms of x and y.
- 36. Write the expression $\sin(2\tan^{-1}x)$ as an algebraic expression in terms of x.

- 37. Find the general solution of the equation $6\sin(\theta) + 10 = 7$.
- 38. Find the general solution of the equation $4\cos\theta = 1$.
- 39. Find the general solution of the equation $11 \tan(\theta) = 3$.
- 40. Find the general solution of the equation $\cos \theta \sin \theta \cos \theta = 0$.
- 41. Find the general solution of the equation $\sin \theta = \cos 2\theta$.
- 42. Let z = 1 + i, let $w = 1 \sqrt{3}i$.
 - (a) Write z and w in polar form.
 - (b) Compute zw.
 - (c) Compute $(zw)^7$.
 - (d) Compute $\frac{z^2}{w^3}$.
- 43. Consider the point $P=(-\sqrt{6},\sqrt{2})$ in rectangular coordinates. Convert P to polar coordinates.
- 44. Consider the point $Q = (3, \pi/6)$ in polar coordinates. Convert Q to rectangular coordinates.
- 45. Using the variables x and y, convert the polar equation $r = 6 \sec \theta$ to rectangular coordinates.
- 46. Using the variables x and y, convert the polar equation $r = 2\cos\theta$ to rectangular coordinates.
- 47. Using the variables x and y, convert the polar equation $r = 1 + \cos \theta$ to rectangular coordinates.

48.	Consider the vector $\mathbf{v} = \langle 7, -2 \rangle$, and let \mathbf{u} be the vector with magnitude $\sqrt{8}$ and direction 135° .
	(a) Write \mathbf{v} in terms of \mathbf{i} and \mathbf{j} .
	(b) Compute the magnitude of \mathbf{v} .
	(c) Compute the direction of \mathbf{v} .
	(d) Write \mathbf{u} in component form.
	(e) Compute the dot product $\mathbf{u} \cdot \mathbf{v}$.
	(f) Compute the angle between ${\bf u}$ and ${\bf v}$.
	(g) Compute the vector $9\mathbf{u} + 4\mathbf{v}$ in component form.
	(h) Determine whether $9\mathbf{u} + 4\mathbf{v}$ is orthogonal to \mathbf{u} .
49.	Write an equation for the parabola with vertex at the origin whose focus is the point $(0, -2)$.
50.	Write an equation for an ellipse centered at the origin that has a focus at $(1,0)$ and a vertex at $(3,0)$.
51.	Write an equation for a hyperbola centered at the origin that has a focus at $(0,1)$ and asymptotes at $y=2x$ and $y=-2x$.

52.	Suppose a parabola has the equation $y^2=8x$. Find the focus and the directrix of this parabola.
53.	Suppose an ellipse has the equation $4x^2 + 25y^2 = 100$. Find the foci of this ellipse and the length of its major axis.
54.	Suppose a hyperbola has the equation $16x^2-4y^2=64$. Find the foci, vertices, and asymptotes of this hyperbola.
55.	To estimate the height of a mountain above a level plain, the angle of elevation to the top of the mountain is measured to be 32° . One thousand feet closer to the mountain along the plain, it is found that the angle of elevation is 35° . Find the height of the mountain, to the nearest foot.
56.	A 96-ft tree casts a shadow that is 120 ft long. What is the angle of elevation of the sun?
57.	The Leaning Tower of Pisa leans 5.6° from the vertical. A tourist stands 105 m from its base with the tower leaning directly towards her. She measures the angle of elevation to the top of the tower to be 29.2° . Find the length of the tower, to the nearest meter.
58.	A lawn mower is pushed a distance of 200 ft along a horizontal path by a constant force of 50 lb. The handle of the lawn mower is at an angle of 30° from the horizontal. Find the work done.