Math 129: Pre-Calculus
Name (Print):
Spring 2018
Practice Problems for Final Exam

1. Find the distance between the points $(6,-2)$ and $(-4,5)$.
2. Find the midpoint of the segment that joins the points $(5,-1)$ and $(3,5)$.
3. Find an equation of the circle of radius 5 centered at $(-2,3)$.
4. Find the center and radius of the circle with equation $x^{2}+(y-2)^{2}=36$.
5. Find the center and radius of the circle with equation $x^{2}+y^{2}+6 y+2=0$.
6. Find an equation of the line with slope 7 that passes through $(4,-1)$.
7. Find an equation of the line that passes through $(6,2)$ and $(-4,3)$.
8. Find an equation of the line that passes through $(3,-1)$ that is parallel to $y=6 x+1$.
9. Find an equation of the line that passes through $(1,1)$ that is perpendicular to $2 x+y=4$.
10. Find all real and complex solutions to $x^{2}+14 x=32$.
11. Find all real and complex solutions to $2 x^{2}+6 x-5=0$.
12. Find all real and complex solutions to $3 x^{2}-2 x+1=0$.
13. Find all real solutions to $\frac{6}{x^{2}-1}-\frac{3}{2}=\frac{3}{x-1}$.
14. Find all real solutions to $\frac{2}{x+3}+\frac{3}{8}=\frac{5}{4 x+12}$.
15. Find all real solutions to $x^{6}-2 x^{3}-3=0$.
16. Find all real solutions to $x^{3 / 2}-10 x^{1 / 2}+25 x^{-1 / 2}=0$.
17. Find all real solutions to $x^{2} \sqrt{x+3}=(x+3)^{3 / 2}$.
18. Find all real solutions to $x^{5}-x^{3}-2 x=0$.
19. Solve the inequality $2-5 x<7$.
20. Solve the inequality $-4<2 x-4 \leq-2$.
21. Solve the equation $|8-3 x|=1$.
22. Solve the inequality $|4 x+1| \geq 21$.
23. Solve the inequality $x^{2}+5 x+6>0$.
24. Solve the inequality $2 x^{2}+x \geq 1$.
25. Consider the function $f(x)=x^{2}-4 x$. Evaluate $f(x-3)$ and simplify.
26. Find the domain of the function $f(x)=\sqrt{4-x^{2}}$.
27. Find the domain of the function $f(x)=\frac{x-1}{x^{2}+3 x-10}$
28. Find the domain of the function $f(x)=\frac{5 x}{\sqrt{x-1}}$.
29. Find the domain of the function $f(x)=\ln (8-2 x)$.
30. Find the domain of the function $f(x)=\frac{1}{\log _{2}(x)}$.
31. If $f(x)=3 \sqrt{x-4}$ and $g(x)=x^{2}-1$, find the formula for $(f \circ g)(x)$.
32. If $f(x)=3 \sqrt{x-4}$ and $g(x)=x^{2}-1$, find the formula for $(g \circ f)(x)$.
33. If $f(x)=13 x^{5 / 3}-1$, find the formula for $f^{-1}(x)$.
34. If $f(x)=\frac{2 x+1}{3 x-7}$, find the formula for $f^{-1}(x)$.
35. Sketch a graph of the function $f(x)=\sqrt[3]{x^{2}-1}$ by making a table of values and plotting some points.

Consider the following graph of a function, $y=f(x)$.

36. Find the domain of f.
37. Find, approximately, the range of f.
38. Find, approximately, the intervals where f is increasing.
39. Find, approximately, the intervals where f is decreasing.
40. Find, approximately, the intervals on which $f(x)>0$.
41. Find the approximate coordinates of any local maxima of f.
42. Find the approximate coordinates of any local minima of f.
43. Is f a one-to-one function?
44. Sketch the graph of $y=f(2-x)+1$.
45. Write the standard form of the quadratic function $f(x)=2 x^{2}-8 x+4$.
46. Find the coordinates of the vertex of the graph of $y=x^{2}-5 x+2$.
47. Find the maximum or minimum value of $f(x)=3 x^{2}-8 x+4$.
48. Determine the end behavior of the function $f(x)=3 x^{4}-4 x^{3}-10 x-1$.
49. Consider the function $f(x)=x^{4}+x^{3}-2 x^{2}$. Find all real zeros of f, state their multiplicities, and sketch the graph of f.
50. Find the quotient and remainder of the division $\frac{x^{4}-2 x^{2}+7 x}{x^{2}-x+3}$.
51. Find the quotient and remainder of the division $\frac{x^{2}-5 x+4}{x-3}$.
52. Let $f(x)=x^{5}-2 x^{4}-9 x^{3}+22 x^{2}+4 x-24$. Suppose that you know that 2 is a zero of f of multiplicity 3 . Use this information to completely factor f.
53. Find a polynomial of degree 3 with integer coefficients and zeros at $\frac{1}{2},-1$, and 2 .
54. Let $f(x)=\frac{1}{(x+2)^{2}}$. Find all zeros of f, vertical asymptotes of f, and horizontal asymptotes of f. Find the behavior of the graph near the vertical asymptotes, and use this to sketch a graph of f.
55. Let $f(x)=\frac{x^{2}-1}{x^{2}-2 x-8}$. Find all zeros of f, vertical asymptotes of f, and horizontal asymptotes of f. Find the behavior of the graph near the vertical asymptotes, and use this to sketch a graph of f.
56. Solve the inequality $\frac{x^{2}-9}{x^{3}+x^{2}-4 x-4}>0$.
57. Let $f(x)=4 e^{4-x}$. Use a calculator to find $f(-1)$, rounded to three decimal places.
58. Write the equation $\log _{6}(36)=2$ in exponential form.
59. Write the equation $4^{x}=20$ in logarithmic form.
60. Let $f(x)=7 \log _{3}(x+2)$. Use the change of base formula and a calculator to find $f(2)$, rounded to three decimal places.
61. Use the log laws to expand $\log _{3}\left(\frac{(x+4) \sqrt{2 x}}{(x+1)^{7}}\right)$.
62. Use the log laws to expand $\log _{10}\left(\frac{x^{2} y^{4}}{\sqrt{x^{3}-6}}\right)$.
63. Write as a single logarithm using the log laws: $\ln (4 x)-2 \ln (x-1)-6 \ln (x+2)$.
64. Solve the equation $3^{x-4}=27$.
65. Solve the equation $e^{4 x}+4=9$.
66. Solve the equation $2^{2 x}-2^{x}-12=0$.
67. Solve the equation $\log _{10}(2 x-3)+1=0$.
68. Solve the equation $\log _{3}\left(x^{2}-4\right)+\log _{3}(x)=\log _{3}(x-2)$.
69. Solve the equation $\log _{8}(x+5)-\log _{8}(x-2)=1$.
70. Convert the angle 160° to radians.
71. Convert the angle $\frac{\pi}{18}$ to degrees.
72. Find an angle between 0 and 2π that is coterminal to $-\frac{19 \pi}{7}$.
73. Find the reference angle of $-\frac{19 \pi}{7}$.
74. If θ is an angle such that $\sin \theta<0$ and $\tan \theta>0$, in what quadrant must θ lie?
75. A circle with a radius 4 has a sector with central angle 30°. Find the area of this sector.
76. A circle with radius 3 has a sector with area 6π. Find the length of the arc surrounding this sector.
77. What is the domain of the function $f(x)=\sin ^{-1}(x)$?
78. What is the range of the function $f(x)=\cos ^{-1}(x)$?
79. What is the range of the function $f(x)=\tan ^{-1}(x)$?
80. What is the amplitude of the function $f(x)=3 \cos (7 x-2)+5$?
81. What is the period of the function $f(x)=3 \cos (7 x-2)+5$?

The following questions are based on a triangle of this form:

82. If $b=3$ and $c=4$, find a.
83. If $a=5$ and $c=7$, find $\tan \theta$.
84. If $a=4$ and $\theta=45^{\circ}$, find c.
85. If $b=1$ and $c=2$, find the value of θ.
86. If $b=1$ and $c=3$, find the area of the triangle.

In these problems, you are given three parts of an oblique triangle, where side a is opposite angle A, side b is opposite angle B, and side c is opposite angle C. In each problem, follow the instructions to give the desired information.
87. Suppose that $A=30^{\circ}, C=80^{\circ}$, and $b=10$. Find the length of side a.
88. Suppose that $A=40^{\circ}, B=70^{\circ}$, and $a=2$. Find the length of side b.
89. Suppose that $a=8, b=10$, and $c=12$. Find the measure of angle A.
90. Suppose that $A=120^{\circ}, b=8, c=2$. Find the length of side a.
91. Suppose that $A=35^{\circ}, b=2, c=7$. Find the area of the triangle.
92. Suppose that $A=25^{\circ}, a=12$, and $c=23$. How many possible solutions are there to this triangle?
93. On the grid below, sketch the graph of $f(x)=\sin (x)$.

94. Review what the graphs of $\tan (x), \cot (x), \sec (x)$, and $\csc (x)$ look like. (For example, redo the graph-matching problem from Exam 4.)
95. For each of the following, find the exact value of the expression (that is, a rounded answer from your calculator will NOT be good enough).
(a) $\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)$
(b) $\tan \left(\tan ^{-1}(-4)\right)$
(c) $\csc \left(\sin ^{-1}(0)\right)$
(d) $\sin \left(\tan ^{-1}(-1)\right)$
96. Write the expression $\cos \left(\tan ^{-1}(x)\right)$ as an algebraic expression in terms of x.
97. Write the expression $\cot \left(\sin ^{-1}(x)\right)$ as an algebraic expression in terms of x.
98. Use a half-angle formula to find the exact value of $\tan \left(15^{\circ}\right)$. (A rounded answer from your calculator will NOT be good enough.)
99. Use a half-angle formula to find the exact value of $\cos \left(\frac{\pi}{8}\right)$. (A rounded answer from your calculator will NOT be good enough.)
100. Verify the identity $(1-\tan x)(1-\cot x)=2-\sec x \csc x$.
101. Verify the identity $\frac{\sin 2 x}{\sin x}-\frac{\cos 2 x}{\cos x}=\sec x$.
102. Verify the identity $(\cos x+\cos y)^{2}+(\sin x-\sin y)^{2}=2+2 \cos (x+y)$.
103. Find the exact value of $\tan \left(\csc ^{-1}(4)-\cos ^{-1}\left(\frac{1}{8}\right)\right)$.
104. Find the exact value of $\cos \left(2 \sin ^{-1}\left(\frac{1}{3}\right)-\frac{\pi}{4}\right)$.
105. Write the expression $\cos \left(\sin ^{-1} x+\cos ^{-1} y\right)$ as an algebraic expression in terms of x and y.
106. Write the expression $\sin \left(2 \tan ^{-1} x\right)$ as an algebraic expression in terms of x.
107. Solve the equation $4 \cos (\theta)=1$.
108. Solve the equation $\tan (\theta)=-6$.
109. Solve the equation $\cos (\theta) \tan (\theta)-\cos (\theta)=0$.
110. Solve the equation $3 \sin ^{2}(\theta)+2 \sin (\theta)=1$.
111. Let $z=1+i$, let $w=1-\sqrt{3} i$.
(a) Write z and w in polar form.
(b) Compute $z w$.
(c) Compute $(z w)^{7}$.
(d) Compute $\frac{z^{2}}{w^{3}}$.
112. Consider the point $P=(-\sqrt{6}, \sqrt{2})$ in rectangular coordinates. Convert P to polar coordinates.
113. Consider the point $Q=(3, \pi / 6)$ in polar coordinates. Convert Q to rectangular coordinates.
114. Using the variables x and y, convert the polar equation $r=6 \sec \theta$ to rectangular coordinates.
115. Using the variables x and y, convert the polar equation $r=2 \cos \theta$ to rectangular coordinates.
116. Using the variables x and y, convert the polar equation $r=1+\cos \theta$ to rectangular coordinates.
117. To estimate the height of a mountain above a level plain, the angle of elevation to the top of the mountain is measured to be 32°. One thousand feet closer to the mountain along the plain, it is found that the angle of elevation is 35°. Find the height of the mountain, to the nearest foot.
118. A 96 - ft tree casts a shadow that is 120 ft long. What is the angle of elevation of the sun?
119. The Leaning Tower of Pisa leans 5.6° from the vertical. A tourist stands 105 m from its base with the tower leaning directly towards her. She measures the angle of elevation to the top of the tower to be 29.2°. Find the length of the tower, to the nearest meter.
120. Find two integers whose sum is 4542 and whose product is 1366632 .
121. An apartment has a rectangular bedroom with an area of $228 \mathrm{ft}^{2}$ that is 7 ft longer than it is wide. What is the width of the room?
122. A large box has a volume of $180 \mathrm{ft}^{3}$. Its length is 9 ft greater than its height, and its width is 4 ft less than its height. What are the dimensions of the box?
123. A ball is thrown into the air, and its height h after t seconds is given by $h(t)=128+16 t-16 t^{2}$. Find the maximum height achieved by the ball.
124. You invest $\$ 500$ into an account with an annual interest rate of 8% that compounds monthly. How much money will be in your account after 2 years?
125. You invest $\$ 800$ into an account with an annual interest rate of 10% that compounds continuously. How much money will be in your account after 3 years?
126. You and your friend are each investing $\$ 1000$ into bank accounts. Your account has an annual interest rate of 6% and compounds continuously. Your friend's account compounds monthly, but you don't know the interest rate. At the end of 1 year, you end up with the exact same amount of money in your account as your friend has in her account. Find the annual interest rate of your friend's account.

