Final Exam Material and Expectations

For the final exam, you should be able to do the following things:

Chapter 2.

- Given a graph, find one-sided and two-sided limits
- Evaluate easy limits by plugging in the value
- Use limit laws to rewrite limits as necessary
- Evaluate harder limits by using some tricks, which include:
- factoring polynomials and canceling common factors
- expanding out polynomials, combining like terms, and refactoring
- simplifying radicals by multiplying by the conjugate
- simplifying complex fractions by simplifying and rewriting as a single fraction
- considering piecewise-defined functions by looking at left and right limits separately
- rewriting absolute value as a piecewise-defined function
- Use the Squeeze Theorem to find limits
- Determine if a function is continuous using limits
- Determine whether a discontinuity is removable, jump, or infinite
- Use $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$ to compute limits

Chapter 3.

- Use the limit definition of the derivative to compute the derivative of a function at a point
- Use the basic differentiation rules, including:
- derivative of a sum is the sum of the derivatives
- derivative of a constant multiple is the constant multiple of the derivative
- product rule
- quotient rule
- chain rule
- Know the derivatives of powers of x and trig functions (full list of derivatives to know is at the end)
- Find the equation of a tangent line to a curve
- Use implicit differentiation to find $\frac{d y}{d x}$ for an implicitly defined curve
- Compute second derivatives, and general higher derivatives
- Use logarithmic differentiation to differentiate messy functions

Chapter 4.

- Solve related rates problems
- Use the linearization formula to estimate values of functions
- Use f^{\prime} to get where f is increasing or decreasing and find local maxima and minima
- Use $f^{\prime \prime}$ to get where f is concave up or concave down and find inflection points
- Compute limits at infinity and negative infinity
- Use limit info to check for vertical and horizontal asymptotes
- Sketch the graph of a function using the previous ingredients
- Solve optimization problems
- Use l'Hôpital's Rule to evaluate limits of indeterminate forms, including

$$
\begin{array}{ll}
-\frac{0}{0} \text { form } & -0 \cdot \infty \text { form } \\
-\frac{\infty}{\infty} \text { form } & -0^{0} \text { form } \\
& -\infty^{0} \text { form } \\
& -1^{\infty} \text { form }
\end{array}
$$

Chapter 5.

- Consider the integral as a measure of signed area between curve and x-axis
- Use basic integral rules, including:
- integral of a sum is the sum of the integrals
- integral of a constant multiple is the constant multiple of the integral
$-\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
- Use antiderivatives to evaluate definite integrals and express indefinite integrals
- Use integration by substitution to solve definite and indefinite integrals
- Find the average value of a function on an interval

Chapter 6.

- Find the area between two curves
- Find the volume of a solid with a flat base and info about cross-sections
- Find the volume of a solid of revolution using either disk/washer method or cylindrical shells method
- Use integration to solve problems involving work or density
- Recall the definitions of sinh and cosh in terms of e^{x} and e^{-x}, and know their derivatives and antiderivatives

Derivatives and Integrals To Know.

- You should definitely have the following memorized:
$\begin{array}{rrl}\text { (i) } \frac{d}{d x}\left(x^{n}\right)=n x^{n-1} & \int x^{n} d x & =\frac{x^{n+1}}{n+1}+C \\ \text { (ii) } \frac{d}{d x}(\sin (x))=\cos (x) & \int \cos (x) d x & =\sin (x)+C \\ \text { (iii) } \frac{d}{d x}(\cos (x))=-\sin (x) & \int \sin (x) d x & =-\cos (x)+C \\ \text { (iv) } \frac{d}{d x}\left(e^{x}\right)=e^{x} & \int e^{x} d x=e^{x}+C \\ \text { (v) } \frac{d}{d x}(\ln (x))=\frac{1}{x} & \int \frac{1}{x} d x=\ln (|x|)+C \\ \text { (vi) } \frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}} & \int \frac{1}{1+x^{2}} d x=\tan ^{-1}(x)+C \\ \text { (vii) } \frac{d}{d x}(\sinh (x))=\cosh (x) & \int \cosh (x) d x & =\sinh (x)+C \\ \text { (viii) } \frac{d}{d x}(\cosh (x))=\sinh (x) & \int \sinh (x) d x & =\cosh (x)+C\end{array}$
- Additionally, you may want to either memorize or remember the process of finding the derivatives and/or integrals of the following functions: $\tan (x), \sec (x), b^{x}, \log _{b}(x), \sin ^{-1}(x), \cos ^{-1}(x), \tanh (x), \operatorname{sech}(x)$.

