Math 155: Calculus I
Spring 2024
Practice Problems for Final Exam

1. Compute $\lim _{x \rightarrow 2} \frac{x^{2}-2}{x^{3}+4 x+3}$.
2. Compute $\lim _{x \rightarrow 0} e^{x}$.
3. Compute $\lim _{x \rightarrow 4} \log _{2}(x)$.
4. Compute $\lim _{x \rightarrow 3} \frac{x^{2}-6 x+9}{x^{2}-9}$.
5. Compute $\lim _{x \rightarrow-1} \frac{\sqrt{2 x+3}-1}{x+1}$.
6. Compute $\lim _{x \rightarrow 0} \frac{(x+2)^{3}-8}{x}$.
7. Compute $\lim _{x \rightarrow 0}\left(\frac{1}{x \sqrt{x+1}}-\frac{1}{x}\right)$.
8. Compute $\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}-\frac{1}{|x|}\right)$.
9. Compute $\lim _{x \rightarrow 0^{+}} \ln (x)$.
10. Compute $\lim _{x \rightarrow 0} \frac{\sin (2 x)}{x}$.
11. Compute $\lim _{x \rightarrow \infty} \frac{2 x^{3}-4 x+18}{x^{3}+20 x^{2}+11 x+13}$.
12. Compute $\lim _{x \rightarrow-\infty} \frac{5 x^{2}+10 x-1}{x^{3}+2}$.
13. Compute $\lim _{x \rightarrow 1} \frac{x^{3}-2 x^{2}+1}{x^{3}-1}$.
14. Compute $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{\sin (x)}$.
15. Compute $\lim _{x \rightarrow \infty} \frac{\ln (x)}{\sqrt{x}}$.
16. Compute $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\sqrt{x}}$.
17. Compute $\lim _{x \rightarrow-1} \frac{x^{9}+1}{x^{5}+1}$.
18. Compute $\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x}-\sqrt{1-4 x}}{x}$.
19. Compute $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}$.
20. Compute $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{\sin (x)+e^{x}-1}$.
21. Compute $\lim _{x \rightarrow \infty} x^{3} e^{-x^{2}}$.
22. Compute $\lim _{x \rightarrow 0^{+}} x^{\sqrt{x}}$.
23. Compute $\lim _{x \rightarrow \infty} x^{1 / x}$.
24. Compute $\lim _{x \rightarrow 0^{+}}(1-x)^{1 / x}$.
25. Use the Squeeze Theorem to find $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{\pi}{x}\right)$.
26. Let $f(x)=\frac{x^{2}-16}{2 x^{2}+8 x}$. Find any discontinuities and determine whether they are removable, jump, or infinite.
27. Let $f(x)=\frac{x^{2}+2 x+1}{x^{2}-1}$. Find any discontinuities and determine whether they are removable, jump, or infinite.
28. Let $f(x)=x^{2}+3 x-2$. Use the limit definition of the derivative to compute $f^{\prime}(4)$.
29. Let $f(x)=\frac{2}{x+3}$. Use the limit definition of the derivative to compute $f^{\prime}(x)$.
30. Let $f(x)=x \ln \left(x^{2}\right)$. Find $f^{\prime}(x)$.
31. Let $f(x)=e^{-x^{2}}$. Find $f^{\prime}(x)$.
32. Let $f(x)=\sin (x) e^{-\cos (x)}$. Find $f^{\prime}(x)$.
33. Let $f(x)=\frac{6 x}{\ln (x)}$. Find $f^{\prime}(x)$.
34. Let $f(x)=\sqrt{\sec (x)}$. Find $f^{\prime}(x)$.
35. Let $f(x)=\ln (x) \ln (\ln (x))$. Find $f^{\prime}(x)$.
36. Let $f(x)=e^{x} e^{\left(e^{x}\right)}$. Find $f^{\prime}(x)$.
37. Let $f(x)=\tan \left(e^{x}\right) e^{-x}$. Find $f^{\prime}(x)$.
38. Let $f(x)=\cosh \left(x^{2}\right)$. Find $f^{\prime}(x)$.
39. Find the equation of the line tangent to the curve $y=e^{\sin (x)}$ at the point $(0,1)$.
40. Let $f(x)=x e^{x}$. Find $f^{\prime \prime}(x)$.
41. Consider the curve $x-2 y=\ln (x y)$. Find $\frac{d y}{d x}$.
42. Consider the curve $(1+x)^{2} y^{2}=e^{x}$. Find the equation of the tangent line to this curve at the point $(0,-1)$.
43. Let $f(x)=\int_{1}^{\ln (x)} e^{t} d t$. Find $f^{\prime}(x)$.
44. The radius of a spherical bubble is increasing at a rate of $2 \mathrm{~mm} / \mathrm{min}$. At what rate is the volume increasing at the moment when the radius is 40 mm ? You may use the fact that the volume of a sphere is given by $V=\frac{4}{3} \pi r^{3}$.
45. Two people start from the same point. One walks east at 3 mph and the other walks south at 2 mph . How fast is the distance between the people changing after a half hour?
46. Use a linear approximation to the function $f(x)=\ln (x)$ at $a=1$ to estimate the number $\ln (0.95)$.
47. Use a linear approximation to the function $f(x)=e^{x}$ at $a=0$ to estimate the number $e^{-1 / 2}$.
48. Consider the function $f(x)=x^{2} e^{x}$. Find the intervals on which $f$ is increasing or decreasing, find the local maximum and minimum values of $f$, find the intervals of concavity of $f$, and find the inflection points of $f$.
49. Consider the function $f(x)=\frac{x^{2}-3 x-10}{x^{2}-4}$. Find the intervals on which $f$ is increasing or decreasing, find the local maximum and minimum values of $f$, find the intervals of concavity of $f$, find the inflection points of $f$, find any vertical and horizontal asymptotes of $f$, and sketch the graph of $f$.
50. A box with a square base and an open top must have a volume of $1000 \mathrm{~cm}^{3}$. Find the dimensions of the box that minimize the amount of material used.
51. A cylindrical box must have a volume of $1000 \mathrm{~cm}^{3}$. The side of the box is to be made of a material that costs $\$ 0.10$ per $\mathrm{cm}^{2}$ and the circular bases of the box are to be made of a material that costs $\$ 0.50$ per $\mathrm{cm}^{2}$. Find the dimensions of the box that minimize the cost of the box. You may use the facts that the volume of a cylinder of radius $r$ and height $h$ is $\pi r^{2} h$ and that the surface area of the side of the cylinder is $2 \pi r h$.
52. Compute $\int_{0}^{1} e^{2 x} d x$.
53. Compute $\int_{2}^{4} 4-\frac{6}{x^{2}} d x$.
54. Compute $\int_{0}^{\pi} \sqrt{x}-\cos (3 x) d x$.
55. Compute $\int_{0}^{1} \frac{4}{x^{2}+1} d x$.
56. Compute $\int_{0}^{1} 10^{x} d x$.
57. Compute $\int_{0}^{1} \sinh (x) d x$.
58. Find $\int \frac{1}{x \ln (x) \ln (\ln (x))} d x$.
59. Find $\int \frac{x^{2}-2 x+1}{x} d x$.
60. Find $\int 1+x^{2}+\frac{1}{1+x^{2}} d x$.
61. Find $\int \frac{\left(\tan ^{-1}(2 x)\right)^{2}}{4 x^{2}+1} d x$.
62. Find $\int x e^{-x^{2}} d x$.
63. Find $\int \cot (x) d x$.
64. Find $\int \frac{1+x}{1+x^{2}} d x$.
65. Find $\int \sinh ^{2}(x) \cosh (x) d x$.
66. Find the area of the region bounded by $y=\frac{1}{x}, y=\frac{1}{x^{2}}$, and $x=2$.
67. Find the area of the region bounded by $y=\sin (x)$ and $y=e^{x}$ from $x=0$ to $x=\pi / 2$.
68. Find the volume of the solid whose base is the region bounded by $y=2^{x}$ and $y=1+2 x-x^{2}$ and whose cross-sections perpendicular to the $x$-axis are squares.
69. Find the volume of the solid obtained by rotating the region in the first quadrant bounded by $y=\cos ^{-1}(x)$ about the $y$-axis.
70. Find the volume of the solid obtained by rotation the region between $y=\ln (x)$ and the $x$-axis from $x=1$ to $x=3$ about the $x$-axis.
71. Find the work done in moving a box from $x=0$ to $x=1$ meters if the force acting on it is $F(x)=3 x^{2} \mathrm{~N}$.
72. Find the mass of a one-dimensional rod that is 3 feet long (starting at $x=0$ ) and has a density function of $\rho(x)=e^{x / 2} \mathrm{lb} / \mathrm{ft}$.
73. Find the average value of the function $f(x)=\frac{\ln (x)}{x}$ on the interval $[1, e]$.
74. Find the average value of the function $f(x)=\sec ^{2}(x) e^{\tan (x)}$ on the interval [0, $\left.\pi / 4\right]$.
75. Let $f(x)=\frac{x \sqrt{x}}{e^{\sin (x)}}$. Use logarithmic differentiation to find $f^{\prime}(x)$.
76. Find the equation of the tangent line to the curve $y=\frac{(x+1)^{6} \tan ^{-1}(x)}{\cos ^{-1}(x)}$ at the point $(0,0)$. (Hint: Use logarithmic differentiation.)
77. Let $f(x)=\ln (x)\left(\frac{1}{x^{2}}\right)$. Use logarithmic differentiation to find $f^{\prime}(x)$.
78. Let $f(x)=\sin \left(\frac{x}{2}\right)^{\sin (x)}$. Use logarithmic differentiation to find the derivative, and use it to find the equation of the tangent line to the curve $y=f(x)$ at the point $(\pi, 1)$.
79. Let $f(x)=x^{7}+2 x^{5}$. Find $\left(f^{-1}\right)^{\prime}(3)$.
80. You have a bowl that is a perfect half-sphere of radius 4 in . Water begins to enter the bowl at a rate of $1 \mathrm{in}^{3} / \mathrm{min}$. You want to find the rate at which the water level is rising when the water level is 2 in . To do so, you need to do the following steps:
(a) First, you want a formula for the volume of water in the bowl when the water level is at a height $h$. But you notice that this volume happens to be the volume of the solid obtained by rotating the region bounded by the $y$-axis, the line $y=-4+h$, and the curve $y=-\sqrt{16-x^{2}}$ about the $y$-axis. Find this volume, in terms of $h$.
(b) Set up a related rates problem using your volume formula from part (a) to compute the solution.
