
Solution to Bonus Problem

The problem was as follows:
Consider the polar equation

r =
ed

1 + e cos(θ − tan−1(− 1
m ))

.

Put this into rectangular coordinates in terms of e, m, and d.

Solution: We can start by multiplying both sides by the denominator on the right:

r + re cos

(
θ − tan−1

(
− 1

m

))
= ed.

Next, we use the difference of angles formula for cosine:

r + re

[
cos(θ) cos

(
tan−1

(
− 1

m

))
+ sin(θ) sin

(
tan−1

(
− 1

m

))]
= ed.

The next step is to get rid of the trig functions. We will use the fact that x = r cos(θ)
and y = r sin(θ).
Then we also need to find algebraic formulas for cos

(
tan−1

(
− 1

m

))
and sin

(
tan−1

(
− 1

m

))
.

This is actually a tricky point, because the sign of each will change, depending on
the sign of m. In other words, let’s consider what happens to these compositions
when the input changes signs. If k > 0, then tan−1(k) will be an angle in quad-
rant I, so both sin(tan−1(k)) and cos(tan−1(k)) should be positive. If k < 0, then
tan−1(k) will be an angle in quadrant IV, so cos(tan−1(k)) will be positive, but
sin(tan−1(k)) will be negative.
Let’s start with m > 0, which makes the input negative. Then by using trig identi-
ties (or drawing out a triangle with opposite side −1 and adjacent side m), we find
that

cos

(
tan−1

(
− 1

m

))
=

m√
m2 + 1

, and sin

(
tan−1

(
− 1

m

))
= − 1√

m2 + 1
.

Next, if m < 0, the input is positive, so both cos and sin should be positive. We
can adjust the signs to conclude that in this case

cos

(
tan−1

(
− 1

m

))
= − m√

m2 + 1
, and sin

(
tan−1

(
− 1

m

))
=

1√
m2 + 1

.

If we don’t want to split into cases, we can use some trickery with absolute value.
In particular, we want the cosine term to be positive no matter what, so we can
replace m by |m|. The sine term is a little tougher, because we want it to be neg-
ative when m is positive, and positive when m is negative. It turns out that we

can rig this by multiplying by − m

|m|
. That is, we have the following formulas that

work for all values of m:

cos

(
tan−1

(
− 1

m

))
=

|m|√
m2 + 1

, and sin

(
tan−1

(
− 1

m

))
= − m

|m|
√
m2 + 1

.
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This reduces our equation to:

r + ex

(
|m|√
m2 + 1

)
− ey

(
m

|m|
√
m2 + 1

)
= ed,

so we can isolate r and we have that

r = e

(
d+

ym

|m|
√
m2 + 1

− x |m|√
m2 + 1

)
.

Now we want to get rid of r, and we know that r2 = x2 + y2. Thus, it may be

tempting to replace r by
√
x2 + y2. However, this does not allow for the possibility

that r could be negative, so this equation may not define the entire conic. (You
can verify that this is the case for the hyperbola by graphing this equation for a
value of e > 1.

Therefore, we must square both sides to arrive at a valid equation:

x2 + y2 = e2
(
d+

ym

|m|
√
m2 + 1

− x |m|√
m2 + 1

)2

.

While this solution is acceptable, if we do the algebra required to square the right
side, we can put our conic in the form Ax2 +Bxy+Cy2 +Dx+Ey = F , as follows:(

1− e2m2

m2 + 1

)
x2+

(
2e2m

m2 + 1

)
xy+

(
1− e2

m2 + 1

)
y2+

(
2e2 |m| d√
m2 + 1

)
x−
(

2e2md

|m|
√
m2 + 1

)
y = e2d2.

Now that we have the answer, what else could we do?

First, I should come clean about what conic this equation actually represents. I
had said in class that it defines a conic with focus (0, 0), eccentricity e, and whose

directrix is the line y = mx+B, where d =
B√

m2 + 1
. This is true for m < 0, but

if you graph the equations for the conic and the directrix together, you’ll notice
that their relationship isn’t quite right when m > 0. We can fix this by using
the same sort of absolute value trickery we used in the solution. So to be more
precise, this equation defines a conic with focus (0, 0), eccentricity e, and directrix

y = mx− m

|m|
d
√
m2 + 1.

Next, we could further generalize our equation by shifting the conic, which is
achieved by replacing x with (x − h) and y with y − k, which moves the focus
at (0, 0) to the point (h, k). This yields:

e2d2 =

(
1− e2m2

m2 + 1

)
(x− h)2 +

(
1− e2

m2 + 1

)
(y − k)2

+

(
2e2m

m2 + 1

)
(x− h)(y − k) +

(
2e2 |m| d√
m2 + 1

)
(x− h)−

(
2e2md

|m|
√
m2 + 1

)
(y − k).
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Finally, the topic that is really interesting to me is whether we can discern
information about the conic directly from its standard form:

Ax2 +Bxy + Cy2 +Dx+ Ey = F.

We know that the value of B here determines the slant, so it’s no surprise that we
can use it to compute the slope of the directrix, depending on the sign of B

A−C . If
B

A−C > 0, then we have the following formula:

−1

m
= tan((tan−1(

B

A− C
))/2)

and thus

m =
sin(tan−1( B

A−C ))

cos(tan−1( B
A−C ))− 1

.

If B
A−C < 0, then tan−1 will give us an angle in quadrant IV when we really want

an angle in quadrant II. We make this adjustment by adding π, which yields the
following formula:

−1

m
= tan((tan−1(

B

A− C
) + π)/2)

and thus

m =
sin(tan−1( B

A−C ) + π)

cos(tan−1( B
A−C ) + π)− 1

.

Next, to get more information, we can imagine rotating this conic to get it back to
a form with no xy term, which would allow us to complete the squares and write
our conic in the familiar forms we’re used to. In particular, the amount we want
to rotate by is θ, where θ is an angle between 0 and π such that tan(2θ) = B

A−C .
Once we have this value of θ, we rewrite our equation in a new set of variables, x̄
and ȳ.

In particular, we let x = x̄ cos(θ) − ȳ sin(θ), and we let y = x̄ sin(θ) + ȳ cos(θ).
By making these substitutions, we rewrite our equation, and it will be symmet-
ric on the x̄ȳ coordinate system. I’ll try to do this generally. Let’s assume that

B
A−C > 0. The other case will give us similar results, but will be a little more of a
headache.
Then:

sin(θ) = sin(tan−1

(
B

A− C

)
/2) =

√√√√1− cos(tan−1
(

B
A−C

)
)

2
=

√√√√1− 1√
1+( B

A−C )2

2

and

cos(θ) = cos(tan−1

(
B

A− C

)
/2) =

√√√√1 + cos(tan−1
(

B
A−C

)
)

2
=

√√√√1 + 1√
1+( B

A−C )2

2
.

Simplifying slightly yields

sin(θ) =

√√
(A− C)2 +B2 − |A− C|

2
√

(A− C)2 +B2
and cos(θ) =

√√
(A− C)2 +B2 + |A− C|

2
√

(A− C)2 +B2
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Next, we want to make the substitutions x = x̄ cos(θ) − ȳ sin(θ) and y =
x̄ sin(θ) + ȳ cos(θ). Let’s do some of the smaller steps first, so we are less over-
whelmed when we put it all together.

First, we have that

x2 = (x̄ cos(θ)− ȳ sin(θ))2 = x̄2 cos2(θ)− 2x̄ȳ cos(θ) sin(θ) + ȳ2 sin2(θ),

and

y2 = (x̄ sin(θ) + ȳ cos(θ))2 = x̄2 sin2(θ) + 2x̄ȳ cos(θ) sin(θ) + ȳ2 cos2(θ),

and

xy = (x̄ cos(θ)− ȳ sin(θ))(x̄ sin(θ) + ȳ cos(θ))

= x̄2 cos(θ) sin(θ) + x̄ȳ cos2(θ)− x̄ȳ sin2(θ)− ȳ2 cos(θ) sin(θ).

In light of these, it appears that we’ll want to look at the formulas for cos2(θ),
sin2(θ), and cos(θ) sin(θ). We have that

cos2(θ) =

√
(A− C)2 +B2 + |A− C|

2
√

(A− C)2 +B2
, sin2(θ) =

√
(A− C)2 +B2 − |A− C|

2
√

(A− C)2 +B2
,

and that

cos(θ) sin(θ) =

√√√√(√(A− C)2 +B2 + |A− C|
2
√

(A− C)2 +B2

)(√
(A− C)2 +B2 − |A− C|

2
√

(A− C)2 +B2

)

=

√
(
√

(A− C)2 +B2 + |A− C|)(
√

(A− C)2 +B2 − |A− C|)
4((A− C)2 +B2)

=
|B|

2
√

(A− C)2 +B2
.

Now we take a deep breath and begin our substitution. We have that

F = Ax2 +Bxy + Cy2 +Dx+ Ey

= A(x̄2 cos2(θ)− 2x̄ȳ cos(θ) sin(θ) + ȳ2 sin2(θ))

+B(x̄2 cos(θ) sin(θ) + x̄ȳ cos2(θ)− x̄ȳ sin2(θ)− ȳ2 cos(θ) sin(θ))

+ C(x̄2 sin2(θ) + 2x̄ȳ cos(θ) sin(θ) + ȳ2 cos2(θ))

+D(x̄ cos(θ)− ȳ sin(θ)) + E(x̄ sin(θ) + ȳ cos(θ))

The most important thing to notice here is the x̄ȳ term, which we combine to write
as [

B(cos2(θ)− sin2(θ)) + 2 cos(θ) sin(θ)(C −A)
]
x̄ȳ.

Substituting in the values for sin and cos makes this coefficient reduce as

B |A− C|√
(A− C)2 +B2

+
|B| (C −A)√
(A− C)2 +B2

,

and since
B

A− C
> 0, this tells us that B and (C −A) have opposite signs, so this

coefficient becomes 0.
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Unfortunately, the other terms aren’t as nice. The other quadratic terms,[
A cos2(θ) +B cos(θ) sin(θ) + C sin2(θ)

]
x̄2

and [
A sin2(θ)−B cos(θ) sin(θ) + C cos2(θ)

]
ȳ2

do not simplify as nicely. However, we can still go ahead and complete the square.
Let’s take care of the x̄ terms first. To save space in displaying these terms, I’ll let
Ā = A cos2(θ) +B cos(θ) sin(θ) + C sin2(θ). Then[
A cos2(θ) +B cos(θ) sin(θ) + C sin2(θ)

]
x̄2 + [D cos(θ) + E sin(θ)] x̄

= Ā

(
x̄2 +

(
D cos(θ) + E sin(θ)

Ā

)
x̄

)
= Ā

(
x̄2 +

(
D cos(θ) + E sin(θ)

Ā

)
x̄+

(D cos(θ) + E sin(θ))2

4Ā2
− (D cos(θ) + E sin(θ))2

4Ā2

)
= Ā

((
x̄+

D cos(θ) + E sin(θ)

2Ā

)2

− (D cos(θ) + E sin(θ))2

4Ā2

)

= Ā

(
x̄+

D cos(θ) + E sin(θ)

2Ā

)2

− (D cos(θ) + E sin(θ))2

4Ā
.

The ȳ terms work similarly, and I’ll let C̄ = A sin2(θ)−B cos(θ) sin(θ) +C cos2(θ).
Then[
A sin2(θ)−B cos(θ) sin(θ) + C cos2(θ)

]
ȳ2 + [E cos(θ)−D sin(θ)] ȳ

= C̄

(
ȳ2 +

(
E cos(θ)−D sin(θ)

C̄

)
ȳ

)
= C̄

(
ȳ2 +

(
E cos(θ)−D sin(θ)

C̄

)
ȳ +

(E cos(θ)−D sin(θ))2

4C̄2
− (E cos(θ)−D sin(θ))2

4C̄2

)
= C̄

((
ȳ +

E cos(θ)−D sin(θ)

2C̄

)2

− (E cos(θ)−D sin(θ))2

4C̄2

)

= C̄

(
ȳ +

E cos(θ)−D sin(θ)

2C̄

)2

− (E cos(θ)−D sin(θ))2

4C̄
.

So our original equation for a conic in standard form has been reduced to:

Ā

(
x̄+

D cos(θ) + E sin(θ)

2Ā

)2

+ C̄

(
ȳ +

E cos(θ)−D sin(θ)

2C̄

)2

= F +
(D cos(θ) + E sin(θ))2

4Ā
+

(E cos(θ)−D sin(θ))2

4C̄

At this point, we can start to diagnose the type of conic. If either Ā or C̄ is 0,
the conic will be a parabola. If Ā and C̄ have different signs, the conic will be a
hyperbola. If Ā and C̄ have the same sign, the conic will be an ellipse, if it exists.
Note the possibility that the conic does not exist, if, for example, Ā and C̄ are both
positive and the right side of the equation is negative. All of these things can be
determined by the sign of the product ĀC̄. So now we’ll calculate this product,
ĀC̄. The algebra here is messy, but if we keep our wits about us, we’ll be rewarded
with something wonderful.
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ĀC̄ = (A cos2(θ) +B cos(θ) sin(θ) + C sin2(θ))(A sin2(θ)−B cos(θ) sin(θ) + C cos2(θ))

= A2 cos2(θ) sin2(θ)−AB cos3(θ) sin(θ) +AC cos4(θ) +AB cos(θ) sin3(θ)−B2 cos2(θ) sin2(θ)

+BC cos3(θ) sin(θ) +AC sin4(θ)−BC cos(θ) sin3(θ) + C2 cos2(θ) sin2(θ)

= (A2 −B2 + C2) cos2(θ) sin2(θ)−B(A− C) cos(θ) sin(θ)(cos2(θ)− sin2(θ))

+AC(cos4(θ) + sin4(θ))

Then we use our formulas for sin(θ) and cos(θ) as needed, and plug in.

=
(A2 −B2 + C2)B2

4((A− C)2 +B2)
− 2B(A− C) |B| |A− C|

4((A− C)2 +B2)
+

2AC(2(A− C)2 +B2)

4((A− C)2 +B2)

=
A2B2 −B4 +B2C2 − 2B2(A− C)2 + 4AC(A− C)2 + 2ACB2

4((A− C)2 +B2)

=
A2B2 −B4 +B2C2 − 2A2B2 + 4ACB2 − 2B2C2 + 4AC(A− C)2 + 2ACB2

4((A− C)2 +B2)

=
4AC(A− C)2 +B2

[
−A2 + 2AC − C2 + 4AC −B2

]
4((A− C)2 +B2)

=
4AC(A− C)2 +B2

[
−(A− C)2 + 4AC −B2

]
4((A− C)2 +B2)

=
4AC(A− C)2 −B2(A− C)2 +B2

[
4AC −B2

]
4((A− C)2 +B2)

=
(A− C)2

[
4AC −B2

]
+B2

[
4AC −B2

]
4((A− C)2 +B2)

=

[
(A− C)2 +B2

] [
4AC −B2

]
4((A− C)2 +B2)

=
4AC −B2

4
.

In other words, −4ĀC̄ = B2 − 4AC. We have thus found the following theorem.

Theorem 1. Suppose the equation Ax2 + Bxy + Cy2 + Dx + Ey = F defines a
nondegenerate conic. Then:

(1) If B2 − 4AC > 0, the conic is a hyperbola.
(2) If B2 − 4AC = 0, the conic is a parabola.
(3) If B2 − 4AC < 0, the conic is an ellipse.

This is a pretty remarkable result! However, I have my sights set even higher:
from the coefficients, can we get a formula for the exact eccentricity? Stay tuned!
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