- (1) Express the given series as a geometric series, *p*-series, or telescoping series.
- (2) (Test for divergence) If the statement " $\lim_{n \to \infty} a_n = 0$ " is false, then $\sum a_n$ diverges.
- (3) (Algebra of limits) If $\sum a_n$ and $\sum b_n$ converge and c is a real number, then $\sum (a_n + b_n)$ and $\sum ca_n$ converge, and

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n \text{ and } \sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n.$$

- (4) (Monotone sequence theorem with bounded partial sums) Suppose $a_n \ge 0$ for all n. The series $\sum a_n$ is convergent if and only if the sequence of partial sums (s_n) is bounded.
- (5) (Integral test) Suppose $a_n \ge 0$ for all n and suppose f is a continuous, decreasing function on $[b, \infty)$ for some b > 0, such that $f(n) = a_n$ for each n. Then the series $\sum a_n$ and the improper integral $\int_b^\infty f(x) dx$ either both converge or both diverge.
- (6) (Comparison test) Suppose $a_n \ge 0$ for all n. • If $0 \le a_n \le b_n$ for all n and $\sum b_n$ converges, then $\sum a_n$ converges.
 - If $0 \le b_n \le a_n$ for all n and $\sum b_n$ diverges, then $\sum a_n$ diverges.
- (7) (Limit comparison test) Suppose $a_n \ge 0$ and $b_n > 0$ for all n. If $\lim_{n \to \infty} \frac{a_n}{b_n}$ is nonzero and finite, then $\sum a_n$ and $\sum b_n$ either both converge or both diverge.
- (8) (Alternating series test) If $0 \le a_{n+1} \le a_n$ for all n and $\lim_{n \to \infty} a_n = 0$, then the alternating series $\sum (-1)^{n-1} a_n$ converges.
- (9) (Ratio test) Suppose $a_n \neq 0$ for all n.
 - If lim_{n→∞} | a_{n+1}/a_n | < 1, then ∑a_n is absolutely convergent.
 If lim_{n→∞} | a_{n+1}/a_n | > 1, then ∑a_n is divergent.

 - If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, then no conclusions can be drawn.
- (10) (Root test)
 - If $\lim_{n \to \infty} \sqrt[n]{|a_n|} < 1$, then $\sum a_n$ is absolutely convergent.
 - If $\lim_{n \to \infty} \sqrt[n]{|a_n|} > 1$, then $\sum a_n$ is divergent.
 - If $\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$, then no conclusions can be drawn.