Math 156: Calculus II
Fall 2017
Practice Problems for Final Exam

1. Compute $\lim _{x \rightarrow 1} \frac{x^{3}-2 x^{2}+1}{x^{3}-1}$.
2. Compute $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{\sin (x)}$.
3. Compute $\lim _{x \rightarrow \infty} \frac{\ln (x)}{\sqrt{x}}$.
4. Compute $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\sqrt{x}}$.
5. Compute $\lim _{x \rightarrow-1} \frac{x^{9}+1}{x^{5}+1}$.
6. Compute $\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x}-\sqrt{1-4 x}}{x}$.
7. Compute $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}$.
8. Compute $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{\sin (x)+e^{x}-1}$.
9. Compute $\lim _{x \rightarrow \infty} x^{3} e^{-x^{2}}$.
10. Compute $\lim _{x \rightarrow 0^{+}} x^{\sqrt{x}}$.
11. Compute $\lim _{x \rightarrow \infty} x^{1 / x}$.
12. Compute $\lim _{x \rightarrow 0^{+}}(1-x)^{1 / x}$.

Evaluate each integral.
13. $\int_{1}^{2} \frac{(x+1)^{2}}{x} d x$
14. $\int \frac{e^{\sin (x)}}{\sec (x)} d x$
26. $\int x \sec (x) \tan (x) d x$
27. $\int_{0}^{\pi} x \cos ^{2}(x) d x$
15. $\int \frac{1}{2 x^{2}+3 x+1} d x$
28. $\int e^{x+e^{x}} d x$
16. $\int_{0}^{\pi / 2} \sin ^{3}(x) \cos ^{2}(x) d x$
29. $\int \tan ^{-1}(\sqrt{x}) d x$
17. $\int \frac{\sin (\ln (x))}{x} d x$
30. $\int \frac{1}{1+e^{x}} d x$
18. $\int_{1}^{2} \frac{\sqrt{x^{2}-1}}{x} d x$
31. $\int \frac{e^{2 x}}{1+e^{x}} d x$
19. $\int \frac{x-1}{x^{2}+2 x} d x$
32. $\int \frac{1}{x \sqrt{4 x+1}} d x$
20. $\int \frac{1}{x \sqrt{x^{2}+1}} d x$
33. $\int \frac{1}{x \sqrt{4 x^{2}+1}} d x$
21. $\int \frac{x^{2}}{\left(4-x^{2}\right)^{3 / 2}} d x$
34. $\int \frac{1}{x+x \sqrt{x}} d x$
22. $\int \frac{\cos (x)}{1-\sin (x)} d x$
35. $\int \sqrt{x} e^{\sqrt{x}} d x$
23. $\int_{1}^{4} \sqrt{x} \ln (x) d x$
36. $\int \frac{1}{\sqrt{x+1}+\sqrt{x}} d x$
24. $\int_{-1}^{1} \frac{e^{\tan ^{-1}(x)}}{1+x^{2}} d x$
37. $\int \frac{1}{x \ln (x)-x} d x$
25. $\int \frac{1}{x^{3} \sqrt{x^{2}-1}} d x$
38. $\int \frac{\sqrt{x}}{1+x^{3}} d x$

Determine whether each integral is convergent or divergent and evaluate those that are convergent.
39. $\int_{0}^{\infty} \frac{x^{2}}{\sqrt{1+x^{3}}} d x$
40. $\int_{-\infty}^{\infty} x e^{-x^{2}} d x$
41. $\int_{1}^{\infty} \frac{\ln (x)}{x} d x$
42. $\int_{0}^{1} \frac{1}{x} d x$
43. $\int_{-2}^{3} \frac{1}{x^{4}} d x$
44. $\int_{0}^{9} \frac{1}{\sqrt[3]{x-1}} d x$
45. $\int_{0}^{\pi / 2} \sec ^{2}(x) d x$
46. Find the centroid of the region bounded by the curves $y=x^{2}$ and $x=y^{2}$.
47. Find the centroid of the region bounded by the curves $y=e^{x}, y=0, x=0$, and $x=1$.
48. Find the centroid of the region bounded by the curves $y=\sin (x), y=\cos (x), x=0$, and $x=\pi / 4$.
49. Find the centroid of the region bounded by the curves $x+y=2$ and $x=y^{2}$.
50. Find the area of the region bounded by the polar curve $r=e^{-\theta / 4}$ from $\theta=\pi / 2$ to $\theta=\pi$.
51. Find the area of the region enclosed by the polar curve $e=3+2 \cos (\theta)$.
52. Find the area of the region enclosed by one loop of the curve $r=4 \cos (3 \theta)$.

For problems 53 through 61, write an integral that gives the arc length of each given curve. Compute the integral if possible.
53. the curve $y=\frac{x^{3}}{3}+\frac{1}{4 x}$, where $1 \leq x \leq 2$
54. the curve $y=\ln (\sec (x))$, where $0 \leq x \leq \pi / 4$
55. the curve $y=x-\ln (x)$, where $1 \leq x \leq 4$
56. the curve parametrized by $x=1+3 t^{2}, y=4+2 t^{3}$, where $0 \leq t \leq 1$
57. the curve parametrized by $x=t+e^{-t}, y=t-e^{-t}$, where $0 \leq t \leq 2$
58. the curve parametrized by $x=t \sin (t), y=t \cos (t)$, where $0 \leq t \leq 1$
59. the polar curve $r=2 \cos (\theta)$, where $0 \leq \theta \leq \pi$
60. the polar curve $r=\sin (6 \sin (\theta))$, where $0 \leq \theta \leq \pi$
61. the polar curve $r=\theta^{2}$, where $0 \leq \theta \leq 2 \pi$
62. Find the eccentricity of the conic $r=\frac{2}{3+3 \sin (\theta)}$ and identify the type of conic.
63. Find the eccentricity of the conic $r=\frac{3}{4-8 \cos (\theta)}$ and identify the type of conic.
64. Find the eccentricity of the conic $r=\frac{4}{5-4 \sin (\theta)}$ and identify the type of conic.

For each curve given in problems 65 through 72 , write one integral that gives the surface area resulting from rotating the curve about the x-axis. Then, write another integral that gives the surface area resulting from rotating the curve about the y-axis. Compute all integrals that are possible to solve.
65. the curve $y=x^{3}$, where $0 \leq x \leq 2$
66. the curve $x=y+y^{3}$, where $0 \leq y \leq 1$
67. the curve $x=\frac{1}{3}\left(y^{2}+2\right)^{3 / 2}$, where $1 \leq y \leq 2$
68. the curve $y=x e^{x}$, where $0 \leq x \leq 5$
69. the curve $y=\frac{1}{x}$, where $1 \leq x \leq 2$
70. the curve parametrized by $x=t \sin (t), y=t \cos (t)$, where $0 \leq t \leq \pi / 2$
71. the curve parametrized by $x=t^{3}, y=t^{2}$, where $0 \leq t \leq 1$
72. the curve parametrized by $x=t+e^{t}, y=e^{-t}$, where $0 \leq t \leq 1$
73. Find the area enclosed by the x-axis and the parametric curve $x=t^{3}+1, y=2 t-t^{2}$.
74. Find the area enclosed by the y-axis and the parametric curve $x=t^{2}-2 t, y=\sqrt{t}$.

For each curve given in problems 75 through 80, find all points where the curve has a vertical tangent line or a horizontal tangent line.
75. the parametric curve $x=t^{3}-3 t, y=t^{2}-3$
76. the parametric curve $x=\cos (\theta), y=\cos (3 \theta)$
77. the parametric curve $x=1+\ln (t), y=t^{2}+2$
78. the polar curve $r=3 \cos (\theta)$
79. the polar curve $r=1+\cos (\theta)$
80. the polar curve $r=e^{\theta}$
81. Find a power series representation for the function $f(x)=\frac{2}{3-x}$ and determine the interval of convergence.
82. Find a power series representation for the function $f(x)=\frac{x^{2}}{x^{4}+16}$ and determine the interval of convergence.
83. Find a power series representation for the function $f(x)=\frac{x}{(1+4 x)^{2}}$ and determine the radius of convergence.
84. Find a power series representation for the function $f(x)=\tan ^{-1}\left(x^{4}\right)$ and determine the radius of convergence.
85. Find a power series representation for the function $f(x)=\ln \left(\frac{1+x}{1-x}\right)$ and determine the radius of convergence.

For each series, determine convergence or divergence. For convergent alternating series, also determine absolute convergence or conditional convergence.
86. $\sum_{n=0}^{\infty} \frac{n^{2}-1}{n^{3}+1}$
87. $\sum_{n=0}^{\infty}(-1)^{n} \frac{n^{2}-1}{n^{3}+1}$
88. $\sum_{n=1}^{\infty} \frac{e^{n}}{n^{2}}$
89. $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln (n)}}$
90. $\sum_{n=0}^{\infty}(-1)^{n} \frac{\pi^{2 n}}{(2 n)!}$
91. $\sum_{n=1}^{\infty}\left(\frac{1}{n^{3}}+\frac{1}{3^{n}}\right)$
92. $\sum_{n=0}^{\infty} \frac{3^{n} n^{2}}{n!}$
93. $\sum_{n=0}^{\infty} \frac{2^{n-1} 3^{n+1}}{n^{n}}$
94. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln (n)}{\sqrt{n}}$
95. $\sum_{n=1}^{\infty}(-1)^{n} \cos \left(1 / n^{2}\right)$
96. $\sum_{n=1}^{\infty} \tan (1 / n)$
97. $\sum_{n=0}^{\infty} \frac{n!}{e^{n^{2}}}$
98. $\sum_{n=0}^{\infty} \frac{n \ln (n)}{(n+1)^{3}}$
99. $\sum_{n=0}^{\infty} \frac{5^{n}}{3^{n}+4^{n}}$
100. $\sum_{n=0}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}$
101. $\sum_{n=1}^{\infty} \frac{1}{n^{1+1 / n}}$
102. $\sum_{n=1}^{\infty}(\sqrt[n]{2}-1)^{n}$
103. $\sum_{n=0}^{\infty} \frac{e^{n}+1}{n e^{n}+1}$
104. $\sum_{n=0}^{\infty} n e^{-n}$
105. $\sum_{n=0}^{\infty} \frac{n^{100} 100^{n}}{n!}$
106. $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{(\ln (n))^{n}}$

For each power series given in problems 107 through 112, find the radius of convergence and interval of convergence.
107. $\sum_{n=1}^{\infty} \frac{x^{n}}{2 n-1}$
108. $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{4} 4^{n}}$
109. $\sum_{n=0}^{\infty} \frac{n}{2^{n}\left(n^{2}+1\right)} x^{n}$
110. $\sum_{n=2}^{\infty} \frac{(x+2)^{n}}{2^{n} \ln (n)}$
111. $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{n^{n}}$
112. $\sum_{n=0}^{\infty} \frac{(5 x-4)^{n}}{n^{3}}$
113. Find the Taylor series for $f(x)=(1-x)^{-2}$ centered at $a=0$, and find the radius of convergence.
114. Find the Taylor series for $f(x)=2^{x}$ centered at $a=0$ and find the radius of convergence.
115. Find the Taylor series for $f(x)=\ln (x)$ centered at $a=2$, and find the radius of convergence.
116. Find the Taylor series for $f(x)=e^{2 x}$ centered at $a=3$, and find the radius of convergence.

