Math 156: Calculus II
Fall 2017
Practice Problems for Final Exam
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Evaluate each integral.
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Determine whether each integral is convergent or divergent and evaluate those that are con-
vergent.
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Find the centroid of the region bounded by the curves y = z? and = = y2.
Find the centroid of the region bounded by the curves y = e*, y =0, z =0, and = = 1.

Find the centroid of the region bounded by the curves y = sin(z), y = cos(z), x = 0, and
x=m/4.

Find the centroid of the region bounded by the curves z 4+ y = 2 and = = y>.
Find the area of the region bounded by the polar curve r = e=%/* from § = 7/2 to 6 = .
Find the area of the region enclosed by the polar curve e = 3 + 2 cos(f).

Find the area of the region enclosed by one loop of the curve r = 4 cos(36).
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53.

54.

55.
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For problems 53 through 61, write an integral that gives the arc length of each given curve.
Compute the integral if possible.

z3 1
the curve y = — 4+ —, where 1 <z <2
3 4z
the curve y = In(sec(x)), where 0 < z < 7 /4

the curve y = x — In(z), where 1 <z <4

the curve parametrized by = 1+ 3t%, y =4 + 2t3, where 0 <t < 1

the curve parametrized by z =t +e, y =t — e !, where 0 <t <2

the curve parametrized by x = tsin(t), y = t cos(t), where 0 <t <1

the polar curve r = 2 cos(f), where 0 < 0 <7

the polar curve r = sin(6sin(f)), where 0 < 6 <«

the polar curve r = 92, where 0 < 0 < 27

Find the eccentricity of the conic r = and identify the type of conic.

3 4 3sin(h)
Find the eccentricity of the conic r = ————— and identify the type of conic.
4 — 8cos(f)

Find the eccentricity of the conic r = and identify the type of conic.

5 — 4sin(6)
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65.
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For each curve given in problems 65 through 72, write one integral that gives the surface area
resulting from rotating the curve about the z-axis. Then, write another integral that gives
the surface area resulting from rotating the curve about the y-axis. Compute all integrals
that are possible to solve.

the curve y = x3, where 0 < z < 2

the curve x = y + y>, where 0 <y < 1

the curve = = +(y? + 2)*/2, where 1 <y < 2

the curve y = xze®, where 0 < x <5

1

the curve y = =, where 1 <z <2

xT

the curve parametrized by = = tsin(t), y = t cos(t), where 0 < t < /2

the curve parametrized by « = t3, y = t?, where 0 <t < 1

the curve parametrized by x =t + e, y = e, where 0 <t <1

Find the area enclosed by the z-axis and the parametric curve z = t3 + 1, y = 2t — t2.

Find the area enclosed by the y-axis and the parametric curve x = t? — 2t, y = /1.
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For each curve given in problems 75 through 80, find all points where the curve has a vertical
tangent line or a horizontal tangent line.

the parametric curve z = 3 — 3t, Y = t2 -3

the parametric curve x = cos(f), y = cos(36)

the parametric curve z = 1+ In(t), y = % + 2

the polar curve r = 3 cos(6)

the polar curve r = 1 + cos(0)

the polar curve r = e’

and determine the interval

Find a power series representation for the function f(x) =

3—x
of convergence.
22
Find a power series representation for the function f(z) = — 16 and determine the interval
x
of convergence.
x
Find a power series representation for the function f(x) = m and determine the radius
x

of convergence.

Find a power series representation for the function f(z) = tan~—!(2*) and determine the radius
of convergence.

1+
1—=x

Find a power series representation for the function f(z) = In ( > and determine the

radius of convergence.
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For each series, determine convergence or divergence. For convergent alternating series, also

determine absolute convergence or conditional convergence.
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For each power series given in problems 107 through 112, find the radius of convergence and
interval of convergence.
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113. Find the Taylor series for f(z) = (1 — 2)~2 centered at a = 0, and find the radius of conver-
gence.

114. Find the Taylor series for f(x) = 2* centered at a = 0 and find the radius of convergence.
115. Find the Taylor series for f(z) = In(x) centered at a = 2, and find the radius of convergence.

116. Find the Taylor series for f(x) = e** centered at a = 3, and find the radius of convergence.



