Math 156: Calculus II
Name (Print):
Spring 2023
Practice Problems for Final Exam

1. Solve the differential equation $x^{2} \frac{d y}{d x}=(x+1) y$.
2. Solve the differential equation $\frac{d y}{d x}=e^{y} x^{2}$.
3. Solve the initial-value problem $\frac{d y}{d x}=y^{2}(x+1)$, with $y(0)=2$.
4. Solve the initial-value problem $\frac{d y}{d x}=e^{y-x}$, with $y(0)=0$.
5. Find the area of the region bounded by the polar curve $r=e^{-\theta / 4}$ from $\theta=\pi / 2$ to $\theta=\pi$.
6. Find the area of the region enclosed by the polar curve $e=3+2 \cos (\theta)$.
7. Find the area of the region enclosed by one loop of the curve $r=4 \cos (3 \theta)$.

For problems 8 to 14 , determine whether each integral is convergent or divergent and evaluate those that are convergent.
8. $\int_{0}^{\infty} \frac{x^{2}}{\sqrt{1+x^{3}}} d x$
9. $\int_{-\infty}^{\infty} x e^{-x^{2}} d x$
10. $\int_{1}^{\infty} \frac{\ln (x)}{x} d x$
11. $\int_{0}^{1} \frac{1}{x} d x$
12. $\int_{-2}^{3} \frac{1}{x^{4}} d x$
13. $\int_{0}^{9} \frac{1}{\sqrt[3]{x-1}} d x$
14. $\int_{0}^{\pi / 2} \sec ^{2}(x) d x$

Evaluate each integral.
15. $\int_{1}^{2} \frac{(x+1)^{2}}{x} d x$
16. $\int \frac{e^{\sin (x)}}{\sec (x)} d x$
17. $\int \frac{1}{2 x^{2}+3 x+1} d x$
18. $\int_{0}^{\pi / 2} \sin ^{3}(x) \cos ^{2}(x) d x$
19. $\int \frac{\sin (\ln (x))}{x} d x$
20. $\int_{1}^{2} \frac{\sqrt{x^{2}-1}}{x} d x$
21. $\int \frac{x-1}{x^{2}+2 x} d x$
22. $\int \frac{1}{x \sqrt{x^{2}+1}} d x$
23. $\int \frac{x^{2}}{\left(4-x^{2}\right)^{3 / 2}} d x$
24. $\int \frac{\cos (x)}{1-\sin (x)} d x$
25. $\int_{1}^{4} \sqrt{x} \ln (x) d x$
26. $\int_{-1}^{1} \frac{e^{\tan ^{-1}(x)}}{1+x^{2}} d x$
27. $\int \frac{1}{x^{3} \sqrt{x^{2}-1}} d x$
28. $\int x \sec (x) \tan (x) d x$
29. $\int_{0}^{\pi} x \cos ^{2}(x) d x$
30. $\int e^{x+e^{x}} d x$
31. $\int \tan ^{-1}(\sqrt{x}) d x$
32. $\int \frac{1}{1+e^{x}} d x$
33. $\int \frac{e^{2 x}}{1+e^{x}} d x$
34. $\int \frac{1}{x \sqrt{4 x+1}} d x$
35. $\int \frac{1}{x \sqrt{4 x^{2}+1}} d x$
36. $\int \frac{1}{x+x \sqrt{x}} d x$
37. $\int \sqrt{x} e^{\sqrt{x}} d x$
38. $\int \frac{1}{\sqrt{x+1}+\sqrt{x}} d x$
39. $\int \frac{1}{x \ln (x)-x} d x$
40. $\int \frac{\sqrt{x}}{1+x^{3}} d x$

For problems 41 through 49, write an integral that gives the arc length of each given curve. Compute the integral if possible.
41. the curve $y=\frac{x^{3}}{3}+\frac{1}{4 x}$, where $1 \leq x \leq 2$
42. the curve $y=\ln (\sec (x))$, where $0 \leq x \leq \pi / 4$
43. the curve $y=x-\ln (x)$, where $1 \leq x \leq 4$
44. the curve parametrized by $x=1+3 t^{2}, y=4+2 t^{3}$, where $0 \leq t \leq 1$
45. the curve parametrized by $x=t+e^{-t}, y=t-e^{-t}$, where $0 \leq t \leq 2$
46. the curve parametrized by $x=t \sin (t), y=t \cos (t)$, where $0 \leq t \leq 1$
47. the polar curve $r=2 \cos (\theta)$, where $0 \leq \theta \leq \pi$
48. the polar curve $r=\sin (6 \sin (\theta))$, where $0 \leq \theta \leq \pi$
49. the polar curve $r=\theta^{2}$, where $0 \leq \theta \leq 2 \pi$
50. Find the eccentricity of the conic $r=\frac{2}{3+3 \sin (\theta)}$ and identify the type of conic.
51. Find the eccentricity of the conic $r=\frac{3}{4-8 \cos (\theta)}$ and identify the type of conic.
52. Find the eccentricity of the conic $r=\frac{4}{5-4 \sin (\theta)}$ and identify the type of conic.

For each curve given in problems 53 through 60 , write one integral that gives the surface area resulting from rotating the curve about the x-axis. Then, write another integral that gives the surface area resulting from rotating the curve about the y-axis. Compute all integrals that are possible to solve.
53. the curve $y=x^{3}$, where $0 \leq x \leq 2$
54. the curve $x=y+y^{3}$, where $0 \leq y \leq 1$
55. the curve $x=\frac{1}{3}\left(y^{2}+2\right)^{3 / 2}$, where $1 \leq y \leq 2$
56. the curve $y=x e^{x}$, where $0 \leq x \leq 5$
57. the curve $y=\frac{1}{x}$, where $1 \leq x \leq 2$
58. the curve parametrized by $x=t \sin (t), y=t \cos (t)$, where $0 \leq t \leq \pi / 2$
59. the curve parametrized by $x=t^{3}, y=t^{2}$, where $0 \leq t \leq 1$
60. the curve parametrized by $x=t+e^{t}, y=e^{-t}$, where $0 \leq t \leq 1$
61. Find the area enclosed by the x-axis and the parametric curve $x=t^{3}+1, y=2 t-t^{2}$.
62. Find the area enclosed by the y-axis and the parametric curve $x=t^{2}-2 t, y=\sqrt{t}$.

For each curve given in problems 63 through 68, find all points where the curve has a vertical tangent line or a horizontal tangent line.
63. the parametric curve $x=t^{3}-3 t, y=t^{2}-3$
64. the parametric curve $x=\cos (\theta), y=\cos (3 \theta)$
65. the parametric curve $x=1+\ln (t), y=t^{2}+2$
66. the polar curve $r=3 \cos (\theta)$
67. the polar curve $r=1+\cos (\theta)$
68. the polar curve $r=e^{\theta}$
69. Find a power series representation for the function $f(x)=\frac{2}{3-x}$ and determine the interval of convergence.
70. Find a power series representation for the function $f(x)=\frac{x^{2}}{x^{4}+16}$ and determine the interval of convergence.
71. Find a power series representation for the function $f(x)=\frac{x}{(1+4 x)^{2}}$ and determine the radius of convergence.
72. Find a power series representation for the function $f(x)=\tan ^{-1}\left(x^{4}\right)$ and determine the radius of convergence.
73. Find a power series representation for the function $f(x)=\ln \left(\frac{1+x}{1-x}\right)$ and determine the radius of convergence.

For each series, determine convergence or divergence. For convergent alternating series, also determine absolute convergence or conditional convergence.
74. $\sum_{n=0}^{\infty} \frac{n^{2}-1}{n^{3}+1}$
85. $\sum_{n=0}^{\infty} \frac{n!}{e^{n^{2}}}$
75. $\sum_{n=0}^{\infty}(-1)^{n} \frac{n^{2}-1}{n^{3}+1}$
86. $\sum_{n=0}^{\infty} \frac{n \ln (n)}{(n+1)^{3}}$
76. $\sum_{n=1}^{\infty} \frac{e^{n}}{n^{2}}$
87. $\sum_{n=0}^{\infty} \frac{5^{n}}{3^{n}+4^{n}}$
77. $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln (n)}}$
88. $\sum_{n=0}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}$
78. $\sum_{n=0}^{\infty}(-1)^{n} \frac{\pi^{2 n}}{(2 n)!}$
79. $\sum_{n=1}^{\infty}\left(\frac{1}{n^{3}}+\frac{1}{3^{n}}\right)$
89. $\sum_{n=1}^{\infty} \frac{1}{n^{1+1 / n}}$
80. $\sum_{n=0}^{\infty} \frac{3^{n} n^{2}}{n!}$
90. $\sum_{n=1}^{\infty}(\sqrt[n]{2}-1)^{n}$
81. $\sum_{n=0}^{\infty} \frac{2^{n-1} 3^{n+1}}{n^{n}}$
91. $\sum_{n=0}^{\infty} \frac{e^{n}+1}{n e^{n}+1}$
82. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln (n)}{\sqrt{n}}$
92. $\sum_{n=0}^{\infty} n e^{-n}$
83. $\sum_{n=1}^{\infty}(-1)^{n} \cos \left(1 / n^{2}\right)$
93. $\sum_{n=0}^{\infty} \frac{n^{100} 100^{n}}{n!}$
84. $\sum_{n=1}^{\infty} \tan (1 / n)$
94. $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{(\ln (n))^{n}}$

For each power series given in problems 95 through 100, find the radius of convergence and interval of convergence.
95. $\sum_{n=1}^{\infty} \frac{x^{n}}{2 n-1}$
96. $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{4} 4^{n}}$
97. $\sum_{n=0}^{\infty} \frac{n}{2^{n}\left(n^{2}+1\right)} x^{n}$
98. $\sum_{n=2}^{\infty} \frac{(x+2)^{n}}{2^{n} \ln (n)}$
99. $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{n^{n}}$
100. $\sum_{n=0}^{\infty} \frac{(5 x-4)^{n}}{n^{3}}$
101. Find the Taylor series for $f(x)=(1-x)^{-2}$ centered at $a=0$, and find the radius of convergence.
102. Find the Taylor series for $f(x)=2^{x}$ centered at $a=0$ and find the radius of convergence.
103. Find the Taylor series for $f(x)=\ln (x)$ centered at $a=2$, and find the radius of convergence.
104. Find the Taylor series for $f(x)=e^{2 x}$ centered at $a=3$, and find the radius of convergence.

