- 1. In 3D space, does the equation $x^2 + y^2 + z^2 = 4$ describe a line, circle, plane, cylinder, or sphere?
- 2. In 3D space, does the equation $x^2 + z^2 = 9$ describe a line, circle, plane, cylinder, or sphere?
- 3. In 3D space, does the equation 4x + y z = 6 describe a line, circle, plane, cylinder, or sphere?
- 4. Suppose $\mathbf{v} = \langle 2, -1, 6 \rangle$ and $\mathbf{w} = \langle -1, -1, 2 \rangle$ are vectors. Find $\mathbf{v} + \mathbf{w}$, find $\mathbf{v} \cdot \mathbf{w}$, find $\mathbf{v} \times \mathbf{w}$, find $|\mathbf{v}|$ and $|\mathbf{w}|$, find the angle between the vectors \mathbf{v} and \mathbf{w} , and determine if they are parallel, perpendicular, or neither.
- 5. Find parametric equations and symmetric equations for the line through the points (-8, 1, 4) and (3, -2, 4).
- 6. Find parametric equations and symmetric equations for the line of intersection between the planes x + 2y + 3z = 1 and x y + z = 1.
- 7. Find an equation for the plane though the point (5,3,5) and with normal vector (2,1,-1).
- 8. Find an equation for the plane through the point (1, -1, -1) and parallel to the plane 5x y z = 6.
- 9. Find an equation for the plane through (6, -1, 3) that contains the line with symmetric equations $\frac{x}{3} = y + 4 = \frac{z}{2}$.
- 10. Determine whether the planes x y + 3z = 1 and 3x + y z = 2 are parallel, perpendicular, or neither.

11. Find the domain of the vector function $\mathbf{r}(t) = \left\langle \cos(t), \ln(t), \frac{1}{t-2} \right\rangle$.

12. Find the limit
$$\lim_{t \to \infty} \left\langle te^{-t}, \frac{t^3 + t}{2t^3 - 1}, t\sin\left(\frac{1}{t}\right) \right\rangle$$

- 13. Write a vector equation and parametric equations for the line segment connecting the point (2,0,0) to the point (6,2,-2).
- 14. Consider a vector function $\mathbf{r}(t) = \langle t^2, \frac{2}{3}t^3, t \rangle$. Find $\mathbf{r}'(t)$, the unit tangent vector $\mathbf{T}(t)$, the unit normal vector $\mathbf{N}(t)$, the binormal vector $\mathbf{B}(t)$, the curvature $\kappa(t)$, the definite integral $\int_0^1 \mathbf{r}(t) dt$, and write an integral that gives the arc length of the curve drawn out by $\mathbf{r}(t)$ from t = 0 to t = 1.
- 15. A rifle is fired with angle of elevation 36°. What is the initial speed of the bullet if the maximum height is 1600 ft?
- 16. If a particle has position function $\mathbf{r}(t) = t\mathbf{i} + 2\cos(t)\mathbf{j} + \sin(t)\mathbf{k}$, find the velocity, acceleration, and speed functions of the particle.
- 17. Determine the domain of the function $f(x,y) = \frac{1}{1-x^2-y^2}$ and sketch this region in the *xy*-plane.

18. Compute
$$\lim_{(x,y)\to(2,-1)} \frac{x^2y + xy^2}{x^2 - y^2}$$
.

- 19. Show that $\lim_{(x,y)\to(0,0)} \frac{xy^2\cos(y)}{x^2+y^4}$ does not exist.
- 20. Find an equation of the tangent plane to the surface $z = (x+2)^2 2(y-1)^2 5$ at the point (2,3,3).
- 21. Find an equation of the tangent plane to the surface $z = x \sin(x+y)$ at the point (-1, 1, 0).

22. Let $f(x,y) = x^2 e^y$. Find $f_x(x,y)$, $f_y(x,y)$, $f_{xy}(x,y)$, $f_{yx}(x,y)$, $f_{xx}(x,y)$, $f_{yy}(x,y)$, $\nabla f(x,y)$, and the directional derivative $D_{\mathbf{u}}f(x,y)$ in the direction $\mathbf{u} = \langle 2, -1 \rangle$.

23. Let
$$f(x, y, z) = x \ln(yz)$$
. Find $\frac{\partial f}{\partial x}(x, y, z), \frac{\partial f}{\partial y}(x, y, z), \frac{\partial f}{\partial z}(x, y, z), \frac{\partial^2 f}{\partial x \partial y}(x, y, z), \frac{\partial^2 f}{\partial y^2}(x, y, z),$
and $\frac{\partial^2 f}{\partial z \partial y}(x, y, z)$.

24. Let
$$f(x, y, z) = e^{xy^2 + z^2}$$
. Find $\nabla f(x, y)$.

25. Find
$$\frac{\partial z}{\partial s}$$
 and $\frac{\partial z}{\partial t}$, where $z = \sqrt{x} e^{xy}$, and $x = 1 + st$, $y = s^2 - t^2$.

- 26. Find all local maxima, local minima, and saddle points of the function $f(x, y) = x^2 + y^4 + 2xy$.
- 27. Find all local maxima, local minima, and saddle points of the function $f(x, y) = x^3 3x + 3xy^2$.
- 28. Find three positive numbers who sum is 12 and and the sum of whose squares is as small as possible.
- 29. Use Lagrange multipliers to find the extreme values of f(x, y) = xy subject to the constraint $4x^2 + y^2 = 8$.
- 30. Use Lagrange multipliers to find the extreme values of $f(x, y) = x^2 + y^2 + 4x 4y$ subject to the constraint $x^2 + y^2 = 9$.

31. Calculate
$$\int_1^2 \int_0^2 y + 2xe^y \, dx \, dy$$

32. Calculate
$$\int_0^1 \int_x^{e^x} 3xy^2 \, dy \, dx$$

33. Calculate
$$\int_0^{\pi} \int_0^1 \int_0^{\sqrt{1-y^2}} y \sin(x) \, dx \, dy \, dz$$
.

- 34. Calculate the integral $\int_0^1 \int_x^1 \cos(y^2) \, dy \, dx$ by first reversing the order of integration.
- 35. Rewrite the integral $\int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} f(x, y, z) dz dy dx$ as an integral in the order dx dy dz.
- 36. Rewrite the integral $\int_0^3 \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} x^3 + xy^2 \, dy \, dx$ as an integral in polar coordinates, and then compute the integral.
- 37. Consider the solid region E that lies above the plane z = 0, below the plane z = y, and inside the cylinder $x^2 + y^2 = 4$. Compute $\iiint_E yz \, dV$.
- 38. Use the transformation u = x y, v = x y to evaluate $\iint_R \frac{x y}{x + y} dA$, where R is the square with vertices (0, 2), (1, 1), (2, 2), and (1, 3). (Hint: this transformation maps the rectangle S in the *uv*-plane onto R, where S has vertices (-2, 2), (0, 2), (0, 4), and (-2, 4).)
- 39. Suppose a lamina occupies the part of the disc $x^2 + y^2 \leq 16$ that lies in the first quadrant and has density function $\rho(x, y) = xy^2$. Compute the total mass and the center of mass of the lamina.
- 40. Use spherical coordinates to evaluate

$$\int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}} y^2 \sqrt{x^2+y^2+z^2} \, dz \, dx \, dy.$$

- 41. Evaluate the line integral $\int_C x \, ds$, where C is the arc of the parabola $y = x^2$ from (0,0) to (1,1), using the parametrization x = t, $y = t^2$.
- 42. Evaluate the line integral $\int_C yz \cos(x) ds$, where C is parametrized by x = t, $y = 3\cos(t)$, $z = 3\sin(t)$, for $0 \le t \le \pi$.
- 43. Evaluate the line integral $\int_C \sqrt{xy} \, dx + e^y \, dy + xz \, dz$, where *C* is drawn out by the vector function $\mathbf{r}(t) = \langle t^4, t^2, t^3 \rangle, \ 0 \le t \le 1$.
- 44. Consider the vector field $\mathbf{F}(x,y) = \langle (1+xy)e^{xy}, e^y + x^2e^{xy} \rangle$. Show that \mathbf{F} is a conservative vector field, and find a function f such that $\mathbf{F} = \nabla f$.
- 45. Consider the vector field $\mathbf{F}(x, y) = \langle 4x^3y^2 2xy^3, 2x^4y 3x^2y^2 + 4y^3 \rangle$. Show that \mathbf{F} is a conservative vector field, and use this to evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the curve drawn out by the vector function $\mathbf{r}(t) = \langle t + \sin(\pi t), 2t + \cos(\pi t) \rangle, 0 \le t \le 1$.
- 46. Suppose that C is the closed curve consisting of the portion of the parabola $y = x^2$ from (-1,1) to (1,1) and the line segment from (1,1) to (-1,1). Compute $\oint_C xy^2 dx x^2y dy$.
- 47. Use Green's Theorem to compute $\oint_C x^2 y \, dx xy^2 \, dy$, where C is the circle $x^2 + y^2 = 4$, positively oriented.
- 48. Consider the vector field $\mathbf{F}(x,y) = \langle y \cos(y), x \sin(y) \rangle$. Compute $\oint_C \mathbf{F} \cdot d\mathbf{r}$, where C is the circle $(x-3)^2 + (y+4)^2 = 4$ traversed clockwise.
- 49. Find the work done by the force $\mathbf{F}(x, y) = \langle x(x+y), xy^2 \rangle$ in moving a particle from the origin along the x-axis to (1, 0), then along the line segment to (0, 1), and then back to the origin along the y-axis.
- 50. Consider the function $f(x, y) = xye^y y^2 \cos(e^{xy})$. Compute $\oint_C \nabla f \cdot d\mathbf{r}$, where C is the ellipse $6x^2 + 7y^2 = 30$ traversed counterclockwise.