## Math 251: Multivariable Calculus Name (Print): Spring 2018 <br> Practice Problems for Final Exam

1. In 3D space, does the equation $x^{2}+y^{2}+z^{2}=4$ describe a line, circle, plane, cylinder, or sphere?
2. In 3D space, does the equation $x^{2}+z^{2}=9$ describe a line, circle, plane, cylinder, or sphere?
3. In 3D space, does the equation $4 x+y-z=6$ describe a line, circle, plane, cylinder, or sphere?
4. Suppose $\mathbf{v}=\langle 2,-1,6\rangle$ and $\mathbf{w}=\langle-1,-1,2\rangle$ are vectors. Find $\mathbf{v}+\mathbf{w}$, find $\mathbf{v} \cdot \mathbf{w}$, find $\mathbf{v} \times \mathbf{w}$, find $|\mathbf{v}|$ and $|\mathbf{w}|$, find the angle between the vectors $\mathbf{v}$ and $\mathbf{w}$, and determine if they are parallel, perpendicular, or neither.
5. Find parametric equations and symmetric equations for the line through the points $(-8,1,4)$ and $(3,-2,4)$.
6. Find parametric equations and symmetric equations for the line of intersection between the planes $x+2 y+3 z=1$ and $x-y+z=1$.
7. Find an equation for the plane though the point $(5,3,5)$ and with normal vector $\langle 2,1,-1\rangle$.
8. Find an equation for the plane through the point $(1,-1,-1)$ and parallel to the plane $5 x-$ $y-z=6$.
9. Find an equation for the plane through $(6,-1,3)$ that contains the line with symmetric equations $\frac{x}{3}=y+4=\frac{z}{2}$.
10. Determine whether the planes $x-y+3 z=1$ and $3 x+y-z=2$ are parallel, perpendicular, or neither.
11. Find the domain of the vector function $\mathbf{r}(t)=\left\langle\cos (t), \ln (t), \frac{1}{t-2}\right\rangle$.
12. Find the limit $\lim _{t \rightarrow \infty}\left\langle t e^{-t}, \frac{t^{3}+t}{2 t^{3}-1}, t \sin \left(\frac{1}{t}\right)\right\rangle$.
13. Write a vector equation and parametric equations for the line segment connecting the point $(2,0,0)$ to the point $(6,2,-2)$.
14. Consider a vector function $\mathbf{r}(t)=\left\langle t^{2}, \frac{2}{3} t^{3}, t\right\rangle$. Find $\mathbf{r}^{\prime}(t)$, the unit tangent vector $\mathbf{T}(t)$, the unit normal vector $\mathbf{N}(t)$, the binormal vector $\mathbf{B}(t)$, the curvature $\kappa(t)$, the definite integral $\int_{0}^{1} \mathbf{r}(t) d t$, and write an integral that gives the arc length of the curve drawn out by $\mathbf{r}(t)$ from $t=0$ to $t=1$.
15. A rifle is fired with angle of elevation $36^{\circ}$. What is the initial speed of the bullet if the maximum height is 1600 ft ?
16. If a particle has position function $\mathbf{r}(t)=t \mathbf{i}+2 \cos (t) \mathbf{j}+\sin (t) \mathbf{k}$, find the velocity, acceleration, and speed functions of the particle.
17. Determine the domain of the function $f(x, y)=\frac{1}{1-x^{2}-y^{2}}$ and sketch this region in the $x y$-plane.
18. Compute $\lim _{(x, y) \rightarrow(2,-1)} \frac{x^{2} y+x y^{2}}{x^{2}-y^{2}}$.
19. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2} \cos (y)}{x^{2}+y^{4}}$ does not exist.
20. Find an equation of the tangent plane to the surface $z=(x+2)^{2}-2(y-1)^{2}-5$ at the point $(2,3,3)$.
21. Find an equation of the tangent plane to the surface $z=x \sin (x+y)$ at the point $(-1,1,0)$.
22. Let $f(x, y)=x^{2} e^{y}$. Find $f_{x}(x, y), f_{y}(x, y), f_{x y}(x, y), f_{y x}(x, y), f_{x x}(x, y), f_{y y}(x, y), \nabla f(x, y)$, and the directional derivative $D_{\mathbf{u}} f(x, y)$ in the direction $\mathbf{u}=\langle 2,-1\rangle$.
23. Let $f(x, y, z)=x \ln (y z)$. Find $\frac{\partial f}{\partial x}(x, y, z), \frac{\partial f}{\partial y}(x, y, z), \frac{\partial f}{\partial z}(x, y, z), \frac{\partial^{2} f}{\partial x \partial y}(x, y, z), \frac{\partial^{2} f}{\partial y^{2}}(x, y, z)$, and $\frac{\partial^{2} f}{\partial z \partial y}(x, y, z)$.
24. Let $f(x, y, z)=e^{x y^{2}+z^{2}}$. Find $\nabla f(x, y)$.
25. Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$, where $z=\sqrt{x} e^{x y}$, and $x=1+s t, y=s^{2}-t^{2}$.
26. Find all local maxima, local minima, and saddle points of the function $f(x, y)=x^{2}+y^{4}+2 x y$.
27. Find all local maxima, local minima, and saddle points of the function $f(x, y)=x^{3}-3 x+3 x y^{2}$.
28. Find three positive numbers who sum is 12 and and the sum of whose squares is as small as possible.
29. Use Lagrange multipliers to find the extreme values of $f(x, y)=x y$ subject to the constraint $4 x^{2}+y^{2}=8$.
30. Use Lagrange multipliers to find the extreme values of $f(x, y)=x^{2}+y^{2}+4 x-4 y$ subject to the constraint $x^{2}+y^{2}=9$.
31. Calculate $\int_{1}^{2} \int_{0}^{2} y+2 x e^{y} d x d y$.
32. Calculate $\int_{0}^{1} \int_{x}^{e^{x}} 3 x y^{2} d y d x$.
33. Calculate $\int_{0}^{\pi} \int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} y \sin (x) d x d y d z$.
34. Calculate the integral $\int_{0}^{1} \int_{x}^{1} \cos \left(y^{2}\right) d y d x$ by first reversing the order of integration.
35. Rewrite the integral $\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{1-y} f(x, y, z) d z d y d x$ as an integral in the order $d x d y d z$.
36. Rewrite the integral $\int_{0}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} x^{3}+x y^{2} d y d x$ as an integral in polar coordinates, and then compute the integral.
37. Consider the solid region $E$ that lies above the plane $z=0$, below the plane $z=y$, and inside the cylinder $x^{2}+y^{2}=4$. Compute $\iiint_{E} y z d V$.
38. Use the transformation $u=x-y, v=x-y$ to evaluate $\iint_{R} \frac{x-y}{x+y} d A$, where $R$ is the square with vertices $(0,2),(1,1),(2,2)$, and $(1,3)$. (Hint: this transformation maps the rectangle $S$ in the $u v$-plane onto $R$, where $S$ has vertices $(-2,2),(0,2),(0,4)$, and $(-2,4)$.)
39. Suppose a lamina occupies the part of the disc $x^{2}+y^{2} \leq 16$ that lies in the first quadrant and has density function $\rho(x, y)=x y^{2}$. Compute the total mass and the center of mass of the lamina.
40. Use spherical coordinates to evaluate

$$
\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} y^{2} \sqrt{x^{2}+y^{2}+z^{2}} d z d x d y
$$

41. Evaluate the line integral $\int_{C} x d s$, where $C$ is the arc of the parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$, using the parametrization $x=t, y=t^{2}$.
42. Evaluate the line integral $\int_{C} y z \cos (x) d s$, where $C$ is parametrized by $x=t, y=3 \cos (t)$, $z=3 \sin (t)$, for $0 \leq t \leq \pi$.
43. Evaluate the line integral $\int_{C} \sqrt{x y} d x+e^{y} d y+x z d z$, where $C$ is drawn out by the vector function $\mathbf{r}(t)=\left\langle t^{4}, t^{2}, t^{3}\right\rangle, 0 \leq t \leq 1$.
44. Consider the vector field $\mathbf{F}(x, y)=\left\langle(1+x y) e^{x y}, e^{y}+x^{2} e^{x y}\right\rangle$. Show that $\mathbf{F}$ is a conservative vector field, and find a function $f$ such that $\mathbf{F}=\nabla f$.
45. Consider the vector field $\mathbf{F}(x, y)=\left\langle 4 x^{3} y^{2}-2 x y^{3}, 2 x^{4} y-3 x^{2} y^{2}+4 y^{3}\right\rangle$. Show that $\mathbf{F}$ is a conservative vector field, and use this to evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $C$ is the curve drawn out by the vector function $\mathbf{r}(t)=\langle t+\sin (\pi t), 2 t+\cos (\pi t)\rangle, 0 \leq t \leq 1$.
46. Suppose that $C$ is the closed curve consisting of the portion of the parabola $y=x^{2}$ from $(-1,1)$ to $(1,1)$ and the line segment from $(1,1)$ to $(-1,1)$. Compute $\oint_{C} x y^{2} d x-x^{2} y d y$.
47. Use Green's Theorem to compute $\oint_{C} x^{2} y d x-x y^{2} d y$, where $C$ is the circle $x^{2}+y^{2}=4$, positively oriented.
48. Consider the vector field $\mathbf{F}(x, y)=\langle y-\cos (y), x \sin (y)\rangle$. Compute $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$, where $C$ is the circle $(x-3)^{2}+(y+4)^{2}=4$ traversed clockwise.
49. Find the work done by the force $\mathbf{F}(x, y)=\left\langle x(x+y), x y^{2}\right\rangle$ in moving a particle from the origin along the $x$-axis to $(1,0)$, then along the line segment to $(0,1)$, and then back to the origin along the $y$-axis.
50. Consider the function $f(x, y)=x y e^{y}-y^{2} \cos \left(e^{x y}\right)$. Compute $\oint_{C} \nabla f \cdot d \mathbf{r}$, where $C$ is the ellipse $6 x^{2}+7 y^{2}=30$ traversed counterclockwise.
