Math 261: Differential Equations Name (Print):
Fall 2022
Practice Problems for Final Exam

Find the general solution of each of the following first-order differential equations by identifying them as separable, linear, exact, or homogeneous (in the first-order non-linear sense), and then applying the appropriate solution method.

1. $\frac{d y}{d x}=e^{3 x+2 y}$
2. $(x+y)^{2} d x+\left(2 x y+x^{2}-1\right) d y=0$
3. $x \frac{d y}{d x}-y=x^{2} \sin (x)$
4. $\frac{d y}{d x}=4\left(y^{2}+1\right)$
5. $y^{\prime}-\sin (x) y=2 \sin (x)$
6. $\frac{d y}{d x}=\frac{y-x}{y+x}$
7. $\left(x^{2}-y^{2}\right) d x+\left(x^{2}-2 x y\right) d y=0$
8. $y d x-4\left(x+y^{6}\right) d y=0$
9. $(\tan (x)-\sin (x) \sin (y)) d x+\cos (x) \cos (y) d y=0$
10. $(x-y) d x+x d y=0$
11. If possible, find the particular solution to each of the equations on the last page subject to initial conditions:
(a) $y(0)=0$
(b) $y(1)=0$
(c) $y(0)=1$
12. The equation $(-x y \sin (x)+2 y \cos (x)) d x+2 x \cos (x) d y=0$ is not exact. Show that $\mu(x, y)=x y$ is an integrating factor that makes the equation exact, and then solve.
13. The population of a town grows at a rate proportional to the population present at time t. The initial population of 500 increases by 15% in 10 years. Find the function $P(t)$ giving the population at time t.
14. A thermometer reading $70^{\circ} \mathrm{F}$ is placed in an oven preheated to a constant temperature. Through a glass window in the oven door, an observer records that the thermometer reads $110^{\circ} \mathrm{F}$ after $\frac{1}{2}$ minute and $145^{\circ} \mathrm{F}$ after 1 minute. How hot is the oven?
15. A large tank is filled to capacity with 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped into the tank at a rate of a $5 \mathrm{gal} / \mathrm{min}$. The well-mixed solution is pumped out at the same rate. Find the number $A(t)$ of pounds of salt in the tank at time t.
16. Calculate the Wronskian of the functions $f_{1}(x)=x^{2}$ and $f_{2}(x)=4 x-3 x^{2}$ and use it to determine whether they are linearly independent on $(-\infty, \infty)$.
17. Calculate the Wronskian of the functions $f_{1}(x)=e^{x} \sin (2 x)$ and $f_{2}(x)=e^{x} \cos (2 x)$ and use it to determine whether they are linearly independent on $(-\infty, \infty)$.
18. Given that $y_{1}=\ln (x)$ is one solution to $x y^{\prime \prime}+y^{\prime}=0$, use the reduction of order formula to find a second solution that is linearly independent to y_{1}.
19. Given that $y_{1}=x+1$ is one solution to $\left(1-2 x-x^{2}\right) y^{\prime \prime}+2(1+x) y^{\prime}-2 y=0$, use the reduction of order formula to find a second solution that is linearly independent to y_{1}.

Give the general solution of each of the following differential equations.
20. $y^{\prime \prime}-y^{\prime}-6 y=0$
21. $y^{\prime \prime}+8 y^{\prime}+16 y=0$
22. $y^{\prime \prime}+9 y=0$
23. $3 y^{\prime \prime}+2 y^{\prime}+y=0$
24. $y^{\prime \prime}-10 y^{\prime}+25 y=0$
25. $\frac{1}{4} y^{\prime \prime}+y^{\prime}+y=x^{2}-2 x$
26. $y^{\prime \prime}+4 y=3 \sin (2 x)$
27. $y^{\prime \prime}+2 y^{\prime}+y=\sin (x)+3 \cos (2 x)$
28. $5 y^{\prime \prime}+y^{\prime}=-6 x$
29. $y^{\prime \prime}+4 y^{\prime}+5 y=35 e^{-4 x}$
30. If possible, find the particular solution to each of the equations on this page subject to initial conditions:
(a) $y(0)=0, y^{\prime}(0)=0$
(b) $y(0)=0, y^{\prime}(0)=1$
(c) $y(0)=1, y^{\prime}(0)=0$
31. Use variation of parameters to solve $y^{\prime \prime}+y=\sec (x)$.
32. Use variation of parameters to solve $y^{\prime \prime}+y=\cos ^{2}(x)$.
33. Use variation of parameters to solve $y^{\prime \prime}-4 y=\frac{e^{2 x}}{x}$.
34. Use variation of parameters to solve $y^{\prime \prime}+2 y^{\prime}+y=e^{-x} \ln (x)$.
35. Solve the equation $x^{2} y^{\prime \prime}-3 x y^{\prime}-2 y=0$.
36. Solve the equation $3 x^{2} y^{\prime \prime}+6 x y^{\prime}+y=0$.
37. Solve the equation $x y^{\prime \prime}+y^{\prime}=x$.
38. A mass of $\frac{1}{8}$ kilograms is attached to a spring with spring constant $16 \mathrm{~N} / \mathrm{m}$ and released at rest from a point 10 cm below the equilibrium. If no damping occurs, find the equation of motion and determine the period.
39. A mass of 20 kilograms is attached to a spring with spring constant $20 \mathrm{~N} / \mathrm{m}$. The mass is released from the equilibrium position with an upward velocity of $10 \mathrm{~m} / \mathrm{s}$. Find the equation of motion if no damping occurs.
40. A 1-kilogram mass is attached to a spring with spring constant $16 \mathrm{~N} / \mathrm{m}$, and damping occurs with damping coefficient $\beta=10$. Determine the equation of motion if the mass is initially released from rest from a point 1 meter below the equilibrium, and determine whether the system is underdamped, overdamped, or critically damped.
41. A mass of $\frac{1}{8}$ kilograms stretches a spring 1.6 meters. Find the value of the damping constant β so that the system is critically damped.
42. A mass of 2 kilograms is attached to a spring with spring constant $32 \mathrm{~N} / \mathrm{m}$, and is allowed to come to equilibrium. Starting at time $t=0$, a force of $f(t)=68 e^{-2 t} \cos (4 t)$ is applied to the system. Find the equation of motion in the absence of damping.
43. Use the definition of the Laplace transform to write an integral giving $\mathscr{L}\left\{\cos ^{3}(t)\right\}$. You do not need to solve this integral.
44. Compute $\mathscr{L}^{-1}\left\{\frac{1}{4 s+1}\right\}$.
45. Compute $\mathscr{L}^{-1}\left\{\frac{2 s-6}{s^{2}+9}\right\}$.
46. Compute $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+2 s-3}\right\}$.
47. Compute $\mathscr{L}^{-1}\left\{\frac{1}{s^{3}+5 s}\right\}$.
48. Compute $\mathscr{L}^{-1}\left\{\frac{1}{(s+2)^{3}}\right\}$.
49. Compute $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+4 s+5}\right\}$.
50. Compute $\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s^{3}}\right\}$.
51. Compute $\mathscr{L}\{(t-1) \mathscr{U}(t-1)\}$.
52. Compute $\mathscr{L}\{t \cos (2 t)\}$.
53. Compute $\mathscr{L}\left\{\int_{0}^{t} e^{-\tau} \cos (\tau) d \tau\right\}$.
54. Consider the piecewise defined function $f(t)=\left\{\begin{array}{lr}0 & \text { if } 0 \leq t<1 \\ t^{2} & \text { if } t \geq 1\end{array}\right.$. Write f in terms of unit step functions and compute $\mathscr{L}\{f(t)\}$.

Use the Laplace transform to solve each initial-value problem.
55. $y^{\prime}+6 y=e^{4 t}, y(0)=2$
56. $y^{\prime \prime}+y=\sqrt{2} \sin (\sqrt{2} t), y(0)=10, y^{\prime}(0)=0$
57. $y^{\prime \prime}-y^{\prime}=e^{t} \cos (t), y(0)=0, y^{\prime}(0)=0$
58. $y^{\prime \prime}+4 y=\sin (t) \mathscr{U}(t-2 \pi), y(0)=1, y^{\prime}(0)=0$
59. $y^{\prime \prime}+16 y=f(t), y(0)=0, y^{\prime}(0)=1$, where $f(t)=\left\{\begin{array}{lr}\cos (4 t) & \text { if } 0 \leq t<\pi \\ 0 & \text { if } t \geq \pi\end{array}\right.$
60. $y^{\prime}(t)=1-\sin (t)-\int_{0}^{t} y(\tau) d \tau, y(0)=0$
61. $y(t)+\int_{0}^{t}(t-\tau) y(\tau) d \tau=t$
62. $y(t)=t e^{t}+\int_{0}^{t} \tau y(t-\tau) d \tau$
63. Rewrite the expression using a single power series whose general term involves x^{k} :

$$
\sum_{n=1}^{\infty} n c_{n} x^{n-1}-\sum_{n=0}^{\infty} c_{n} x^{n}
$$

64. Rewrite the expression using a single power series whose general term involves x^{k} :

$$
\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}-2 \sum_{n=1}^{\infty} n c_{n} x^{n}+\sum_{n=0}^{\infty} c_{n} x^{n}
$$

Find two power series solutions of each differential equation about the ordinary point $x=0$.
65. $y^{\prime \prime}+x^{2} y^{\prime}+x y=0$
66. $\left(x^{2}+2\right) y^{\prime \prime}+3 x y^{\prime}-y=0$
67. $(x-1) y^{\prime \prime}-x y^{\prime}+y=0$
68. For each of the following equations, determine whether 0 is an ordinary point, a regular singular point, or an irregular singular point.
(a) $2 x y^{\prime \prime}-y^{\prime}+2 y=0$
(b) $x^{2} y^{\prime \prime}+(3 x-1) y^{\prime}+y=0$
(c) $(x-1) y^{\prime \prime}+y^{\prime}=0$
69. Each of the following equations has a regular singular point at $x=0$. Find the indicial roots of each equation, and determine how many power series solutions can be expected.
(a) $4 x y^{\prime \prime}+\frac{1}{2} y^{\prime}+y=0$
(b) $x y^{\prime \prime}-x y^{\prime}+y=0$
(c) $x^{2} y^{\prime \prime}+\left(\frac{5}{3} x+x^{2}\right) y^{\prime}-\frac{1}{3} y=0$
70. Find two power series solutions to $9 x^{2} y^{\prime \prime}+9 x^{2} y^{\prime}+2 y=0$.
71. Find one power series solution to $x y^{\prime \prime}+(1-x) y^{\prime}-y=0$. Do not attempt to find a second power series solution.
72. Show that the functions $f_{1}(x)=x$ and $f_{2}(x)=\cos (2 x)$ are orthogonal on $[-\pi / 2, \pi / 2]$.
73. Find the Fourier series of the function $f(x)=\left\{\begin{array}{lr}0, & -2<x<-1 \\ -2, & -1 \leq x<0 \\ 1, & 0 \leq x<1 \\ 0, & 1 \leq x<2\end{array}\right.$, and find the number to which the series converges at each discontinuity.

Find the Fourier series of each function.
74. $f(x)=\left\{\begin{array}{lr}0, & -\pi<x<0 \\ x^{2}, & 0 \leq x<\pi\end{array}\right.$
75. $f(x)=\left\{\begin{array}{lr}0, & -\pi<x<0 \\ \sin (x), & 0 \leq x<\pi\end{array}\right.$
76. $f(x)=e^{x}, \pi<x<\pi$
77. $f(x)=\left\{\begin{array}{lr}1, & -5<x<0 \\ 1+x, & 0 \leq x<5\end{array}\right.$
78. Find the Fourier sine series of $f(x)=\left\{\begin{array}{cc}x-1, & -\pi<x<0 \\ x+1, & 0 \leq x<\pi\end{array}\right.$.
79. Find the Fourier cosine series of $f(x)=x^{2},-1<x<1$.
80. Find the Fourier cosine series of $f(x)=\left\{\begin{array}{lr}-\sin (x), & -\pi<x<0 \\ \sin (x), & 0 \leq x<\pi\end{array}\right.$.
81. Find the Fourier sine series of $f(x)=\left\{\begin{array}{lr}-\cos (x), & -\pi<x<0 \\ \cos (x), & 0 \leq x<\pi\end{array}\right.$.
82. Find the half-range cosine and sine expansions of $f(x)=\left\{\begin{array}{ll}x, & 0<x<1 \\ 1, & 1 \leq x<2\end{array}\right.$.
83. Find the half-range cosine and sine expansions of $f(x)=x^{2}+x, 0<x<1$.
84. Find the half-range cosine and sine expansions of $f(x)=x+1,0<x<1$.
85. Find a Fourier series solution to the equation $y^{\prime \prime}+10 y=f(x)$, where

$$
f(x)=\left\{\begin{array}{lr}
5, & 0<x<\pi \\
-5, & \pi \leq x<2 \pi
\end{array}\right.
$$

For each partial differential equation, use separation of variables to find, if possible, product solutions.
86. $\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}$
87. $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=u$
88. $x \frac{\partial u}{\partial x}=y \frac{\partial u}{\partial y}$
89. $k \frac{\partial^{2} u}{\partial x^{2}}-u=\frac{\partial u}{\partial t}$, for $k>0$
90. $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=u$

