MATH 448 Bonus Homework, due Wednesday, May 1
Each of the following four problems can be completed for a 1% bonus applied to the Final Exam, for a total of at most a bonus of 4%.

- On a certain type of solitaire game, I have played 2569 games and won 1049 of them. The goal of the first two problems is to better understand my underlying probability p of winning each game.

1. Construct a two-sided 90% confidence interval for p.
2. Test the hypothesis $H_{0}: p=0.4242$ by calculating the p-value. Is this hypothesis plausible?

- My stats playing the game Wordle in a total of 550 games as are given by the following chart:

Score	1	2	3	4	5	6
Observed Frequency	0	32	173	222	102	21

3. Let p_{i} denote the probability of getting the score i. Use the Pearson chi-square statistic to conduct a size $\alpha=0.05$ hypothesis test for the hypothesis:
$H_{0}: p_{1}=0.001, p_{2}=0.06, p_{3}=0.33, p_{4}=0.4, p_{5}=0.17, p_{6}=0.039$.
4. You notice that the bar graph for the data resembles a bell curve, so you reconsider this categorical data as numerical data by equating the score of 1 with the interval $(0.5,1.5]$, the score of 2 with the interval $(1.5,2.5]$, and so on. Therefore, the bar chart can be considered as a histogram for continuous data. Use the Pearson chi-square statistic to calculate the p-value for the null hypothesis:
H_{0} : the scores are normally distributed with mean $\mu=3.8$ and variance $\sigma^{2}=1$.
Is this hypothesis plausible?
