Homework 1, due Thursday, January 18

Please turn in well-written solutions for the following problems:
(1) Let A, B, C, and D be sets. Suppose that $A \backslash B \subseteq C \cap D$, and suppose that $x \in A$. Prove that if $x \notin D$, then $x \in B$.
(2) Use induction to prove that

$$
\forall n \in \mathbb{Z}^{+}, 1 \cdot 2+2 \cdot 3+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3} .
$$

(3) Use induction to prove that

$$
\forall n \in \mathbb{Z}^{+}, 1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

(4) Let f be a function with domain D, and suppose that $S \subseteq D$. We define $f(S)=\{f(x) \mid x \in S\}$.
(a) Let A and B be subsets of D. Prove that $f(A \cap B) \subseteq f(A) \cap f(B)$.
(b) Give an example of a function f and sets A and B in the domain of f such that $f(A) \cap f(B) \not \subset f(A \cap B)$.
(5) Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$, and let $h=g \circ f$.
(a) Prove that if f is onto and g is onto, then h is onto.
(b) Prove that if h is onto, then g is onto.
(c) Suppose that h is $1-1$. Is it true that g is $1-1$? Prove or give a counterexample.
(d) Suppose that h is $1-1$. Is it true that f is $1-1$? Prove or give a counterexample.
(6) Suppose that A is an infinite set, and let $P(A)$ denote the power set of A. Prove that there is no onto function $f: A \rightarrow P(A)$. (Hint: modify the diagonalization argument.)

