Please turn in well-written solutions for the following problems:
(1) Let A, B, C, and D be sets. Suppose that $A \backslash B \subseteq C \cap D$, and suppose that $x \in A$. Prove that if $x \notin D$, then $x \in B$.
(2) Use induction to prove that

$$
\forall n \in \mathbb{N}, 1 \cdot 2+2 \cdot 3+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}
$$

(3) Use induction to prove that

$$
\forall n \in \mathbb{N}, 1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

(4) Let f be a function with domain D, and suppose that $S \subseteq D$. We define $f(S)=\{f(x) \mid x \in S\}$.
(a) Let A and B be subsets of D. Prove that $f(A \cap B) \subseteq f(A) \cap f(B)$.
(b) Give an example of a function f and sets A and B in the domain of f such that $f(A) \cap f(B) \not \subset f(A \cap B)$.
(5) Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$, and let $h=g \circ f$.
(a) Prove that if f is onto and g is onto, then h is onto.
(b) Prove that if h is onto, then g is onto.
(c) Suppose that h is $1-1$. Is it true that g is $1-1$? Prove or give a counterexample.
(d) Suppose that h is $1-1$. Is it true that f is $1-1$? Prove or give a counterexample.
(6) (GRE Problem) Let S be the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$. Consider the two binary operations + and \circ on S defined as pointwise addition and composition of functions, as follows.

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x) \\
& \quad(f \circ g)(x)=f(g(x))
\end{aligned}
$$

Which of the following statements are true?
I. ○ is commutative.
II. + and \circ satisfy the left distributive law $f \circ(g+h)=(f \circ g)+(f \circ h)$.
III. + and \circ satisfy the right distributive law $(g+h) \circ f=(g \circ f)+(h \circ f)$.
(A) None
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III

