HOMEWORK 3, DUE THURSDAY, FEBRUARY 1

Please turn in well-written solutions for the following:

- (1) Let A and B be non-empty bounded subsets of \mathbb{R} .
 - (a) Prove that if $\sup(A) < \inf(B)$, then A and B are disjoint.
 - (b) Prove that if $\inf(B) < \sup(A)$, then there exist $a \in A$ and $b \in B$ such that b < a.
- (2) Recall that a number r is rational if there exist $a, b \in \mathbb{Z}$ such that $r = \frac{a}{b}$. We say $r \in \mathbb{Q}$.
 - (a) Prove that if $r, q \in \mathbb{Q}$, then $r + q \in \mathbb{Q}$.
 - (b) Prove that if $r \in \mathbb{Q}$ and $s \notin \mathbb{Q}$, then $r + s \notin \mathbb{Q}$. (That is, the sum of a rational and an irrational is irrational.)
- (3) Prove that the irrational numbers are dense in R. That is, prove that for any x, y ∈ R with x < y, there exists s ∈ R\Q such that x < s < y. (Hint: You may use without proof the fact that the rational numbers are dense in R, as well as the results of the previous problem.)
- (4) Define $f: (0,2) \to \mathbb{R}$ by $f(x) = \frac{x^2 4}{x 2}$. Prove that $\lim_{x \to 2} f(x)$ exists.
- (5) Define $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ by $f(x) = \frac{|x|}{x}$.
 - (a) Use an ε argument to prove that $\lim_{x \to 0^+} f(x) = 1$.
 - (b) Use an ε argument to prove that $\lim_{x \to 0^-} f(x) = -1$.