Homework 3, due Thursday, February 1

Please turn in well-written solutions for the following:
(1) Let A and B be non-empty bounded subsets of \mathbb{R}.
(a) Prove that if $\sup (A)<\inf (B)$, then A and B are disjoint.
(b) Prove that if $\inf (B)<\sup (A)$, then there exist $a \in A$ and $b \in B$ such that $b<a$.
(2) Recall that a number r is rational if there exist $a, b \in \mathbb{Z}$ such that $r=\frac{a}{b}$. We say $r \in \mathbb{Q}$.
(a) Prove that if $r, q \in \mathbb{Q}$, then $r+q \in \mathbb{Q}$.
(b) Prove that if $r \in \mathbb{Q}$ and $s \notin \mathbb{Q}$, then $r+s \notin \mathbb{Q}$. (That is, the sum of a rational and an irrational is irrational.)
(3) Prove that the irrational numbers are dense in \mathbb{R}. That is, prove that for any $x, y \in \mathbb{R}$ with $x<y$, there exists $s \in \mathbb{R} \backslash \mathbb{Q}$ such that $x<s<y$.
(Hint: You may use without proof the fact that the rational numbers are dense in \mathbb{R}, as well as the results of the previous problem.)
(4) Define $f:(0,2) \rightarrow \mathbb{R}$ by $f(x)=\frac{x^{2}-4}{x-2}$. Prove that $\lim _{x \rightarrow 2} f(x)$ exists.
(5) Define $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ by $f(x)=\frac{|x|}{x}$.
(a) Use an ε argument to prove that $\lim _{x \rightarrow 0^{+}} f(x)=1$.
(b) Use an ε argument to prove that $\lim _{x \rightarrow 0^{-}} f(x)=-1$.

