Homework 4, due Thursday, February 15
Please turn in well-written solutions for the following:
(1) Let $D \subset \mathbb{R}$ and suppose $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}$ are both continuous. Define $h: D \rightarrow \mathbb{R}$ by $h(x)=\max \{f(x), g(x)\}$. Prove that h is continuous on D.
(2) Consider the function

$$
f(x)= \begin{cases}|x| & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

(a) Prove that f is continuous at 0 .
(b) Prove that if $a \neq 0$, then f is not continuous at a.
(3) Suppose $E \subset D \subset \mathbb{R}$, and suppose $x_{0} \in E$. Let $f: D \rightarrow \mathbb{R}$ be a function, and define $g: E \rightarrow \mathbb{R}$ by $g(x)=f(x)$ for all $x \in E$.
(a) Prove that if f is continuous at x_{0}, then g is continuous at x_{0}.
(b) Give an example of sets E and D and functions f and g as above, such that g is continuous at x_{0} but f is NOT continuous at x_{0}.
(4) We say that x is a fixed point of f if $f(x)=x$.
(a) Suppose that $f:[0,1] \rightarrow[0,1]$ is a continuous function. Prove that there exists $c \in[0,1]$ such that $f(c)=c$. (That is, show that f has a fixed point.)
(b) Suppose that f is L-continuous on \mathbb{R} for some $L \in[0,1)$. Prove that f cannot have two different fixed points.
(5) Suppose $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$ is L_{1}-continuous for some $L_{1} \geq 0$, and $f_{2}: \mathbb{R} \rightarrow \mathbb{R}$ is L_{2}-continuous for some $L_{2} \geq 0$. Prove that $f_{2} \circ f_{1}$ is L-continuous with $L=L_{1} L_{2}$.
(6) Let $I \subset \mathbb{R}$ be some interval, and suppose that $f: I \rightarrow \mathbb{R}$ is L-continuous for some $L \geq 0$. Prove that f is uniformly continuous on I.

