Homework 4, due Friday, September 27

Please turn in well-written solutions for the following:

- (1) Let $D \subset \mathbb{R}$ and suppose $f : D \to \mathbb{R}$ and $g : D \to \mathbb{R}$ are both continuous. Define $h : D \to \mathbb{R}$ by $h(x) = \max\{f(x), g(x)\}$. Prove that h is continuous on D.
- (2) Consider the function

$$f(x) = \begin{cases} |x| & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

- (a) Prove that f is continuous at 0.
- (b) Prove that if $a \neq 0$, then f is not continuous at a.
- (3) Suppose $E \subset D \subset \mathbb{R}$, and suppose $x_0 \in E$. Let $f : D \to \mathbb{R}$ be a function, and define $g : E \to \mathbb{R}$ by g(x) = f(x) for all $x \in E$.
 - (a) Prove that if f is continuous at x_0 , then g is continuous at x_0 .
 - (b) Give an example of sets E and D and functions f and g as above, such that g is continuous at x_0 but f is NOT continuous at x_0 .
- (4) We say that x is a fixed point of f if f(x) = x.
 - (a) Suppose that $f : [0,1] \to [0,1]$ is a continuous function. Prove that there exists $c \in [0,1]$ such that f(c) = c. (That is, show that f has a fixed point.)
 - (b) Suppose that f is L-continuous on \mathbb{R} for some $L \in [0, 1)$. Prove that f cannot have two different fixed points.
- (5) Suppose $f_1 : \mathbb{R} \to \mathbb{R}$ is L_1 -continuous for some $L_1 \ge 0$, and $f_2 : \mathbb{R} \to \mathbb{R}$ is L_2 -continuous for some $L_2 \ge 0$. Prove that $f_2 \circ f_1$ is L-continuous with $L = L_1 L_2$.
- (6) Let $I \subset \mathbb{R}$ be some interval, and suppose that $f : I \to \mathbb{R}$ is *L*-continuous for some $L \ge 0$. Prove that f is uniformly continuous on I.