Homework 5, due Thursday, March 8

Please turn in well-written solutions for the following:
(1) Prove that the function $f(x)=|x|$ is not differentiable at $x=0$.
(2) If $f(x)=\cos (x)$, prove that $f^{\prime}(x)=-\sin (x)$.
(Hint: You may use the fact that

$$
\cos (x)-\cos (y)=-2 \sin \left(\frac{x-y}{2}\right) \sin \left(\frac{x+y}{2}\right)
$$

without proof.)
(3) Suppose that f is a function that is n-times differentiable on (a, b), and define $F(x)=x f(x)$. Find a formula for the nth derivative $F^{(n)}(x)$, and use induction to prove that your formula is correct.
(4) Suppose that $f_{1}, f_{2}, \ldots, f_{n}$ are differentiable on (a, b), and suppose that for some fixed $x \in(a, b)$, we have that all of the values $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are non-zero. Consider the product $g=f_{1} f_{2} f_{3} \cdots f_{n}$. Prove that

$$
\frac{g^{\prime}(x)}{g(x)}=\frac{f_{1}^{\prime}(x)}{f_{1}(x)}+\cdots+\frac{f_{n}^{\prime}(x)}{f_{n}(x)}
$$

(Hint: It may be useful to find and prove a formula for g^{\prime}.)
(5) Use the mean value theorem to prove that $f(x)=\sin (x)$ is L-continuous on \mathbb{R} for $L=1$.
(6) Recall that a function $f: I \rightarrow \mathbb{R}$ is α-Hölder-continuous on I, if there exists $C \geq 0$ such that for every $x, y \in I$, we have $|f(x)-f(y)| \leq C|x-y|^{\alpha}$.

Suppose that $\alpha>1$ and that f is differentiable on I. Prove that if f is α-Hölder-continuous on I, then f is a constant function on I.

