Homework 5, due Friday, October 25
Please turn in well-written solutions for the following:
(1) Prove that the function $f(x)=|x|$ is not differentiable at $x=0$.
(2) If $f(x)=\cos (x)$, prove that $f^{\prime}(x)=-\sin (x)$.
(Hint: You may use the fact that

$$
\cos (x)-\cos (y)=-2 \sin \left(\frac{x-y}{2}\right) \sin \left(\frac{x+y}{2}\right)
$$

without proof.)
(3) Suppose that f is a function that is n-times differentiable on (a, b), and define $F(x)=x f(x)$. Find a formula for the nth derivative $F^{(n)}(x)$, and use induction to prove that your formula is correct.
(4) Use the mean value theorem to prove that $f(x)=\sin (x)$ is L-continuous on \mathbb{R} for $L=1$.
(5) Recall that a function $f: I \rightarrow \mathbb{R}$ is α-Hölder-continuous on I, if there exists $C \geq 0$ such that for every $x, y \in I$, we have $|f(x)-f(y)| \leq C|x-y|^{\alpha}$.

Suppose that $\alpha>1$ and that f is differentiable on I. Prove that if f is α-Hölder-continuous on I, then f is a constant function on I.
(6) (GRE Problem) If f is a continuously differentiable real-valued function defined on the open interval $(-1,4)$ such that $f(3)=5$ and $f^{\prime}(x) \geq-1$ for all x, what is the greatest possible value of $f(0)$?
(A) 3
(B) 4
(C) 5
(D) 8
(E) 11
(7) (GRE Problem) The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined as follows.

$$
f(x)= \begin{cases}3 x^{2} & \text { if } x \in \mathbb{Q} \\ -5 x^{2} & \text { if } x \notin \mathbb{Q}\end{cases}
$$

Which of the following is true?
(A) f is discontinuous at all $x \in \mathbb{R}$.
(B) f is continuous only at $x=0$ and differentiable only at $x=0$.
(C) f is continuous only at $x=0$ and nondifferentiable at all $x \in \mathbb{R}$.
(D) f is continuous at all $x \in \mathbb{Q}$ and nondifferentiable at all $x \in \mathbb{R}$.
(E) f is continuous at all $x \notin \mathbb{Q}$ and nondifferentiable at all $x \in \mathbb{R}$.

