Homework 6, due Wednesday, November 6

Please turn in well-written solutions for the following:

- (1) Use an ε -based argument to show that $f(x) = \frac{1}{x^2}$ is integrable on [1,2]. (In other words, you may not simply cite the fact that f is monotone or continuous to conclude integrability.)
- (2) Suppose that $f : [a, b] \to \mathbb{R}$ is continuous and $f(x) \ge 0$ for all $x \in [a, b]$. Prove that if $\int_a^b f(x) \, dx = 0$, then f(x) = 0 for all $x \in [a, b]$.
- (3) (a) Suppose that $f : [a, b] \to \mathbb{R}$ is bounded on all of [a, b] and is continuous everywhere except at a single point, $x_0 \in [a, b]$. Prove that f is integrable on [a, b].
 - (b) Now suppose that $f : [a, b] \to \mathbb{R}$ is bounded on [a, b] and is continuous at all but a finite amount of points, $\{x_1, x_2, x_3, \ldots, x_n\} \subset [a, b]$. Prove that f is integrable on [a, b].
- (4) Suppose that $f : [a, b] \to \mathbb{R}$ and $g : [a, b] \to \mathbb{R}$ are both bounded, integrable functions. Prove that the product h = fg is integrable on [a, b].
- (5) For each $k \in \mathbb{Z}^+$, define $x_k = \frac{k}{k+1}$. Then for each $k, 0 < x_k < 1$, and moreover, we have that

 $0 < x_1 < x_2 < x_3 < \dots < x_k < x_{k+1} < \dots < 1,$

and $\sup\{x_k \mid k \in \mathbb{Z}^+\} = 1$. Define a function $f: [0,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1 & \text{if } x \in [0, x_1) \cup [x_2, x_3) \cup [x_4, x_5) \cup \cdots \\ 0 & \text{if } x = 1 \text{ or } x \in [x_1, x_2) \cup [x_3, x_4) \cup \cdots \end{cases}$$

Prove that f is integrable on [0, 1].

(6) (GRE Problem) A real-valued function f defined on \mathbb{R} has the following property.

For every positive number ϵ , there exists a positive number δ such that

$$|f(x) - f(1)| \ge \epsilon$$
 whenever $|x - 1| \ge \delta$.

This property is equivalent to which of the following statements about f?

(A) f is continuous at x = 1.

- (B) f is discontinuous at x = 1.
- (C) f is unbounded.

(D)
$$\lim_{|x|\to\infty} |f(x)| = \infty.$$

(E) $\int_0^\infty |f(x)| dx = \infty.$