Homework 6, due Wednesday, November 6

Please turn in well-written solutions for the following:
(1) Use an ε-based argument to show that $f(x)=\frac{1}{x^{2}}$ is integrable on $[1,2]$. (In other words, you may not simply cite the fact that f is monotone or continuous to conclude integrability.)
(2) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $f(x) \geq 0$ for all $x \in[a, b]$. Prove that if $\int_{a}^{b} f(x) d x=0$, then $f(x)=0$ for all $x \in[a, b]$.
(3) (a) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is bounded on all of $[a, b]$ and is continuous everywhere except at a single point, $x_{0} \in[a, b]$. Prove that f is integrable on $[a, b]$.
(b) Now suppose that $f:[a, b] \rightarrow \mathbb{R}$ is bounded on $[a, b]$ and is continuous at all but a finite amount of points, $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\} \subset[a, b]$. Prove that f is integrable on $[a, b]$.
(4) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$ are both bounded, integrable functions. Prove that the product $h=f g$ is integrable on $[a, b]$.
(5) For each $k \in \mathbb{Z}^{+}$, define $x_{k}=\frac{k}{k+1}$. Then for each $k, 0<x_{k}<1$, and moreover, we have that

$$
0<x_{1}<x_{2}<x_{3}<\cdots<x_{k}<x_{k+1}<\cdots<1
$$

and $\sup \left\{x_{k} \mid k \in \mathbb{Z}^{+}\right\}=1$. Define a function $f:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}1 & \text { if } x \in\left[0, x_{1}\right) \cup\left[x_{2}, x_{3}\right) \cup\left[x_{4}, x_{5}\right) \cup \cdots \\ 0 & \text { if } x=1 \text { or } x \in\left[x_{1}, x_{2}\right) \cup\left[x_{3}, x_{4}\right) \cup \cdots\end{cases}
$$

Prove that f is integrable on $[0,1]$.
(6) (GRE Problem) A real-valued function f defined on \mathbb{R} has the following property.
For every positive number ϵ, there exists a positive number δ such that

$$
|f(x)-f(1)| \geq \epsilon \text { whenever }|x-1| \geq \delta
$$

This property is equivalent to which of the following statements about f ?
(A) f is continuous at $x=1$.
(B) f is discontinuous at $x=1$.
(C) f is unbounded.
(D) $\lim _{|x| \rightarrow \infty}|f(x)|=\infty$.
(E) $\int_{0}^{\infty}|f(x)| d x=\infty$.

