Please turn in well-written solutions for the following:
(1) Use the fundamental theorem of calculus and the rule for differentiating a product to prove the following "integration by parts" formula:
If u and v are differentiable functions on $[a, b]$ whose derivatives are continuous on $[a, b]$, then

$$
\int_{a}^{b} u(x) v^{\prime}(x) d x=\left.u(x) v(x)\right|_{a} ^{b}-\int_{a}^{b} u^{\prime}(x) v(x) d x
$$

(2) Recall that we defined $L(x)=\int_{1}^{x} \frac{1}{t} d t$, we showed that L is a bijection from $(0, \infty)$ onto \mathbb{R}, and we defined E to be the inverse function of L. We showed that $E(0)=1$, and that $E(x+y)=E(x) E(y)$ for all $x, y \in \mathbb{R}$. Then we used this to define the operation of raising a positive real number x to the power of any other real number s by

$$
x^{s}=E(s L(x))
$$

(a) Under this definition and the properties of E listed above, show that for any $s, t \in \mathbb{R}$, we have that $x^{s+t}=x^{s} x^{t}$.
(b) We also showed that $E^{\prime}(x)=E(x)$ for any real number x. Let s be an arbitrary nonzero real number, and define $f:[0, \infty) \rightarrow \mathbb{R}$ by $f(x)=x^{s}$. Use the above definition of x^{s} based on E, the differentiation property of E, and the chain rule to show that $f^{\prime}(x)=s x^{s-1}$.
(3) Note that for any real numbers α and β, we have that

$$
\int_{a}^{b}(\alpha f(x)+\beta g(x))^{2} d x \geq 0
$$

(a) Use this to prove that for any $\alpha, \beta \in \mathbb{R}$ and for any integrable functions f and g on $[a, b]$, we have that

$$
2 \alpha \beta \int_{a}^{b} f(x) g(x) d x \leq \alpha^{2} \int_{a}^{b}(f(x))^{2} d x+\beta^{2} \int_{a}^{b}(g(x))^{2} d x
$$

(b) By picking the values of α and β in a clever way, use part (a) to show that
$\left(\int_{a}^{b} f(x) g(x) d x\right)^{2} \leq\left(\int_{a}^{b}(f(x))^{2} d x\right)\left(\int_{a}^{b}(g(x))^{2} d x\right)$.
This result is an integral form of the Cauchy-Schwarz Inequality.
(c) Use part (b) to show that

$$
\left(\int_{a}^{b}(f(x)+g(x))^{2} d x\right)^{1 / 2} \leq\left(\int_{a}^{b}(f(x))^{2} d x\right)^{1 / 2}+\left(\int_{a}^{b}(g(x))^{2} d x\right)^{1 / 2}
$$

This result is a special case of Minkowski's Inequality.

