Homework 8, due Wednesday, December 11

Please turn in well-written solutions for the following:
(1) (a) Give an example of sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ that do not converge but such that $\left(a_{n}+b_{n}\right)_{n \in \mathbb{Z}^{+}}$does converge.
(b) Give an example of sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ that do not BOTH converge (one of them may) but such that $\left(a_{n} b_{n}\right)_{n \in \mathbb{Z}^{+}}$does converge.
(c) Prove that if $\left(a_{n}\right)$ converges to $A \neq 0$ and $\left(b_{n}\right)$ is a sequence such that $\left(a_{n} b_{n}\right)$ converges, then $\left(b_{n}\right)$ must also converge.
(2) (a) Let $\left(b_{n}\right)_{n \in \mathbb{Z}^{+}}$be a sequence such that $\left(b_{n}\right)$ converges to B, and $B \neq 0$. Prove that there exists $M>0$ and $N \in \mathbb{Z}^{+}$such that if $n \geq N$, then $\left|b_{n}\right| \geq M$.
(b) Suppose $\left(a_{n}\right)$ converges to A and $\left(b_{n}\right)$ converges to B, with $B \neq 0$ and $b_{n} \neq 0$ for all n. Prove that $\left(\frac{a_{n}}{b_{n}}\right)_{n=1}^{\infty}$ converges to $\frac{A}{B}$.
(3) Let $\left(s_{n}\right)$ be a convergent sequence with the property that exactly one trillion terms in the sequence have absolute value strictly greater than 1 (not necessarily the first one trillion terms, they are scattered throughout the sequence). Let $L=\lim _{n \rightarrow \infty} s_{n}$. Prove that $|L| \leq 1$.
(4) Let S be a nonempty set of real numbers, and suppose that $\sup (S)=M$ exists. Prove that there exists a sequence $\left(s_{n}\right)_{n \in \mathbb{Z}^{+}}$such that $s_{n} \in S$ for each $n \in \mathbb{Z}^{+}$and such that $M=\lim _{n \rightarrow \infty} s_{n}$. (That is, M is an accumulation point of S.)
(5) The Fibonacci sequence is defined by $f_{0}=0, f_{1}=1$, and for any $n \geq 2$, we define f_{n} recursively by $f_{n}=f_{n-1}+f_{n-2}$. We use this to define a new sequence by $r_{n}=\frac{f_{n+1}}{f_{n}}$.
(a) Use some simple algebra to show that $r_{n+1}=1+\frac{1}{r_{n}}$ for every n.
(b) Assume that $\left(r_{n}\right)$ is a convergent sequence. (This is true, but we may not have time to get through all the steps needed to show it.) In this case, use (a) to show that $\lim _{n \rightarrow \infty} r_{n}=\frac{\sqrt{5}+1}{2}$, the golden ratio.

