Homework 1, due Friday, August 24

Please turn in well-written solutions for the following problems:

- (1) (1.1.13 in Tao) Let X be any set, $x \in X$, and $(x_n)_{n=1}^{\infty}$ a sequence in X. Prove that (x_n) converges to x in the discrete metric d_{disc} if and only if there exists N such that $x_n = x$ for every $n \ge N$.
- (2) (1.1.16 in Tao) Let $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ be two sequences in some metric space (X,d), such that $x_n \to x$ and $y_n \to y$ for some points $x,y \in X$. Prove that $\lim_{n\to\infty} d(x_n,y_n) = d(x,y)$. (Hint: Use the triangle inequality multiple times.)
- (3) Let X be the set of all continuous real-valued functions with domain [0,1]. Define a function $d: X \times X \to [0,\infty)$ by $d(f,g) = \int_0^1 (f(x) g(x))^2 dx$, for any f and g in X. Prove that (X,d) is NOT a metric space, because the triangle inequality is not satisfied. (Hint: Consider constant functions.)
- (4) Consider \mathbb{R}^2 with the metrics d_{l^2} , d_{l^1} , $d_{l^{\infty}}$, and d_{disc} . In each of these metrics, sketch B((0,0),1), the ball of radius 1 centered at the origin. That is, I want you to:
 - (i) Sketch $B_{(\mathbb{R}^2,d_{12})}((0,0),1)$.
 - (ii) Sketch $B_{(\mathbb{R}^2,d_{l^1})}((0,0),1)$.
 - (iii) Sketch $B_{(\mathbb{R}^2, d_{1\infty})}((0,0), 1)$.
 - (iv) Sketch $B_{(\mathbb{R}^2, d_{\text{disc}})}((0, 0), 1)$.
- (5) Let (X, d) be a metric space, and let $E, F \subset X$. Recall the notation that $A \setminus B$ is the set of all elements in A that are not elements in B. Using the definitions and theorems given in class, prove the following:
 - (a) $int(E) = E \setminus \partial E$
 - (b) $int(E) \cap int(F) = int(E \cap F)$
 - (c) $\operatorname{int}(E) \cup \operatorname{int}(F) \subset \operatorname{int}(E \cup F)$ (also, show by example that equality is not always true!)
- (6) Let (X,d) be a metric space, and let $E \subset X$. Prove that $x \in \partial E$ if and only if for every r > 0, $B(x,r) \cap E \neq \emptyset$ and $B(x,r) \cap E^c \neq \emptyset$.

In addition, I suggest that you study these problems from Tao:

- Section 1.1, problems 1.1.4, 1.1.5, 1.1.6, 1.1.12
- Section 1.2, problems 1.2.1, 1.2.4