Homework 1, due Friday, January 24
Please turn in well-written solutions for the following problems:
(1) (1.1.13 in Tao) Let X be any set, $x \in X$, and $\left(x_{n}\right)_{n=1}^{\infty}$ a sequence in X. Prove that $\left(x_{n}\right)$ converges to x in the discrete metric $d_{\text {disc }}$ if and only if there exists N such that $x_{n}=x$ for every $n \geq N$.
(2) (1.1.16 in Tao) Let $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(y_{n}\right)_{n=1}^{\infty}$ be two sequences in some metric space (X, d), such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ for some points $x, y \in X$. Prove that $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=d(x, y)$. (Hint: Use the triangle inequality multiple times.)
(3) Let X be the set of all continuous real-valued functions with domain $[0,1]$. Define a function $d: X \times X \rightarrow[0, \infty)$ by $d(f, g)=\int_{0}^{1}(f(x)-g(x))^{2} d x$, for any f and g in X. Prove that (X, d) is NOT a metric space, because the triangle inequality is not satisfied. (Hint: This means you have to find counter-examples of functions that make the triangle inequality fail. Consider constant functions.)
(4) Consider \mathbb{R}^{2} with the metrics $d_{l^{2}}, d_{l^{1}}, d_{l^{\infty}}$, and $d_{\text {disc }}$. In each of these metrics, sketch $B((0,0), 1)$, the ball of radius 1 centered at the origin. That is, I want you to:
(i) Sketch $B_{\left(\mathbb{R}^{2}, d_{l^{2}}\right)}((0,0), 1)$.
(ii) Sketch $B_{\left(\mathbb{R}^{2}, d_{l^{1}}\right)}((0,0), 1)$.
(iii) Sketch $B_{\left(\mathbb{R}^{2}, d_{l} \infty\right)}((0,0), 1)$.
(iv) Sketch $B_{\left(\mathbb{R}^{2}, d_{\text {disc }}\right)}((0,0), 1)$.
(5) Let (X, d) be a metric space, and let $E, F \subset X$.
(a) Prove that $\operatorname{int}(E) \cup \operatorname{int}(F) \subset \operatorname{int}(E \cup F)$.
(b) Give an example of a metric space X with subsets E and F such that $\operatorname{int}(E) \cup \operatorname{int}(F) \neq \operatorname{int}(E \cup F)$. (That is, $\operatorname{int}(E \cup F)$ contains points that are in neither $\operatorname{int}(E)$ nor $\operatorname{int}(F)$. Don't overthink it! This can be done even with a metric space as simple as $X=\mathbb{R}$.)
(6) Let (X, d) be a metric space, and let $E \subset X$. Prove that $x \in \partial E$ if and only if for every $r>0, B(x, r) \cap E \neq \emptyset$ and $B(x, r) \cap E^{c} \neq \emptyset$.

In addition, I suggest that you study these problems from Tao:

- Section 1.1, problems 1.1.4, 1.1.5, 1.1.6, 1.1.12
- Section 1.2, problems 1.2.1, 1.2.4

