HOMEWORK 2, DUE FRIDAY, AUGUST 31

Please turn in well-written solutions for the following problems:

- (1) Let (X, d) be any metric space.
 - (a) Prove that $B_{(X,d)}(x_0,r)$ is open for any $x_0 \in X$ and any r > 0.
 - (b) Prove that $\{x \in X : d(x, x_0) \le r\}$ is closed for any $x_0 \in X, r > 0$.
- (2) Let (X, d) be a metric space, and let $E, F \subset X$. Recall the notation that $A \setminus B$ is the set of all elements in A that are not elements in B. Using the definitions and theorems given in class, prove the following:
 - (a) $\overline{E} = E \cup \partial E$
 - (b) $\operatorname{int}(E) = (\overline{E^c})^c$
- (3) (1.4.5 in Tao) Let (X, d) be a metric space, $E \subseteq X$. Recall that we defined x to be a *limit point* or *adherent point* of a set E if there exists a sequence $(x_n)_{n=1}^{\infty}$ in E such that $x_n \to x$. Recall that we defined x to be a *cluster point* of a sequence $(x_n)_{n=0}^{\infty}$ if for all $\varepsilon > 0$ and for all $N \ge 1$, there exists $n \ge N$ such that $d(x_n, x) < \varepsilon$.
 - (a) Suppose that $(x_n)_{n=1}^{\infty}$ is a sequence in a metric space (X, d). Prove that if x is a cluster point of the sequence, then x is an adherent point of the set $\{x_n : n \ge 1\}$.
 - (b) Prove that the converse is false. That is, prove that there exists a sequence $(x_n)_{n=1}^{\infty}$ in some metric space (X, d) such that x is an adherent point of the set $\{x_n : n \ge 1\}$, but such that x is not a cluster point of the sequence.
- (4) (1.4.6 in Tao) Let (X, d) be a metric space, and $(x_n)_{n=1}^{\infty}$ be a sequence in X. Prove that if L_1 and L_2 are both cluster points of (x_n) and $L_1 \neq L_2$, then (x_n) is not Cauchy.

In addition, I suggest that you study these problems from Tao:

• Section 1.4, problems 1.4.3, 1.4.2, 1.4.8