Homework 5, due Friday, March 6

Please turn in well-written solutions for the following problems:
(1) (3.2.4 in Tao) Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ be metric spaces, and let $f_{n}: X \rightarrow Y$ be a bounded function for each n, and suppose that $f_{n} \rightarrow f$ uniformly, for some bounded function $f: x \rightarrow Y$. Prove that the sequence is uniformly bounded. That is, prove that there exists a ball $B_{\left(Y, d_{Y}\right)}\left(y_{0}, R\right)$ in Y such that for all $x \in X$ and for all positive integers n, we have that $f_{n}(x) \in B\left(y_{0}, R\right)$. (Notably, y_{0} and R do not depend on x or on n.)
(2) (3.3.8 in Tao) Let $\left(X, d_{X}\right)$ be a metric space, and consider two sequences of functions $\left(f_{n}\right)_{n=1}^{\infty},\left(g_{n}\right)_{n=1}^{\infty} \subset B(X \rightarrow \mathbb{R})$. Suppose further that both sequences are uniformly bounded, as defined in the previous problem. (So since the codomain is now the real numbers, this means that there exists an $M>0$ such that $\left|f_{n}(x)\right| \leq M$ and $\left|g_{n}(x)\right| \leq M$ for all $x \in X$ and every positive integer n.) If $f_{n} \rightarrow f$ uniformly and $g_{n} \rightarrow g$ uniformly, prove that the sequence of products $\left(f_{n} g_{n}\right)_{n=1}^{\infty}$ converges uniformly to $f g$.
(3) (3.3.7 in Tao) Find an example of a sequence of bounded functions $\left(f_{n}\right)_{n=1}^{\infty}$ from \mathbb{R} to \mathbb{R} such that $f_{n} \rightarrow f$ pointwise on \mathbb{R}, but f is not bounded.
(4) (3.4.4 in Tao, modified) Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. Define $Y^{X}=\{f: X \rightarrow Y\}$, the space of all functions from X to Y. It turns out that there isn't a good metric to put on Y^{X} to make it into an interesting metric space, but we still have a way of defining open sets and convergence in Y^{X} without a metric.
To this end, if $x_{0} \in X$ and $V \subseteq Y$ is an open set, we define
$V^{\left(x_{0}\right)}=\left\{f \in Y^{X}: f\left(x_{0}\right) \in V\right\}$. Then if $E \subseteq Y^{X}$, we say that E is open in Y^{X} if for every $f \in E$, there exists a finite number of points $x_{1}, x_{2}, \ldots, x_{n} \in X$ and open sets $V_{1}, V_{2}, \ldots V_{n} \subseteq Y$ such that
$f \in V_{1}^{\left(x_{1}\right)} \cap V_{2}^{\left(x_{2}\right)} \cap \ldots \cap V_{n}^{\left(x_{n}\right)}$ and $V_{1}^{\left(x_{1}\right)} \cap V_{2}^{\left(x_{2}\right)} \cap \ldots \cap V_{n}^{\left(x_{n}\right)} \subseteq E$.
(Note: For us, the major takeaway from this is that the sets $V_{i}^{\left(x_{i}\right)}$ are, in fact, open sets, so this property is roughly analogous to the metric space idea that a set is open if every point in the set has an open ball around it completely contained in the set.)
For each positive integer n, let $f_{n} \in Y^{X}$, and let $f \in Y^{X}$. Prove that $f_{n} \rightarrow f$ pointwise on X if and only if for every open set $E \subseteq Y^{X}$ with $f \in E$, there exists N such that whenever $n \geq N$, we have $f_{n} \in E$.
(Hint: Really work on this one! Despite the fact that we're defining some new things here, when you break down all the definitions, it's not too bad!)
In addition, I suggest that you study these problems from Tao:

- Section 3.1, problem 3.1.5
- Section 3.2, problem 3.2.3
- Section 3.3, problems 3.3.4, 3.3.5
- Section 3.4, problem 3.4.3

