Homework 6, due Friday, October 19

Please turn in well-written solutions for the following problems:

- (1) For each positive integer n, let $f_n : [-\pi, \pi] \to \mathbb{R}$ by $f_n(x) = \cos(x+n)$. Show that $(f_n)_{n=1}^{\infty}$ has a subsequence that converges uniformly to a continuous function on $[-\pi, \pi]$.
- (2) For a metric space (X, d_X) , we say that a continuous function $f : X \to \mathbb{R}$ vanishes at infinity if for every $\varepsilon > 0$, there exists a compact set $K \subseteq X$ such that for all $x \in K^c$, we have that $|f(x)| < \epsilon$. We define the set
 - $C_0(X, \mathbb{R}) = \{ f : X \to \mathbb{R} | f \text{ is continuous and vanishes at infinity} \}.$
 - (a) Show that $C_0(X, \mathbb{R}) \subseteq B(X, \mathbb{R})$.
 - (b) We showed in class that C(X, Y) is always closed in $(B(X, Y), d_{\infty})$. Is $C_0(X, \mathbb{R})$ closed in $(B(X, \mathbb{R}), d_{\infty})$? Prove or give a counterexample.
- (3) In class, we used the word equicontinuity of a collection F of functions from X to Y to refer to *uniform equicontinuity*, which says that for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all $f \in F$ and for all $x_1, x_2 \in X$, whenever $d(x_1, x_2) < \delta$ we have that $d(f(x_1), f(x_2)) < \varepsilon$.

However, for a point $x_0 \in X$, we also give the following definition. We say that F is *pointwise equicontinuous at* x_0 if for all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $f \in F$ and for all $x \in X$, whenever $d(x_0, x) < \delta$ we have that $d(f(x_0), f(x)) < \varepsilon$. Then we say that F is *pointwise equicontinuous* on X if F is pointwise equicontinuous at x_0 for every $x_0 \in X$.

- (a) Suppose that X is a compact metric space and F is a collection of functions from X to Y. Prove that if F is pointwise equicontinuous on X, then F is uniformly equicontinuous.
- (b) Is the converse of (a) true? That is, if every pointwise equicontinuous sequence of functions is automatically uniformly equicontinuous, does that imply that X is compact? Prove or give a counterexample.
- (4) Let (X, d_X) be a compact metric space. Recall that a function f : X → X that preserves distances is called an *isometry*; that is, f is an isometry if for every x₁, x₂ ∈ X, we have that d(x₁, x₂) = d(f(x₁), f(x₂)). Let Iso(X) = {f : X → X | f is an isometry}. (Note: This is not any sort of standard notation for the set of isometries; I'm just making it up now.)
 (a) Prove that Iso(X) ⊆ B(X, X). (In fact, Iso(X) ⊆ C(X, X).)
 - (b) Prove that Iso(X) is a compact subset of $(B(X, X), d_{\infty})$.