HOMEWORK 7, DUE WEDNESDAY, OCTOBER 31

Please turn in well-written solutions for the following problems:

(1) Let $(f_n)_{n=1}^{\infty}$ be a sequence of functions, $f_n : [0,1] \to \mathbb{R}$ such that for each $x \in [0,1], f_n(x) \to 0$ as $n \to \infty$. Suppose further that there exists a constant K such that for every n,

$$\left|\int_0^1 f_n(x)\,dx\right| \le K.$$

Is it true that $\int_0^1 f_n(x) dx \to 0$ as $n \to \infty$? Prove or give a counterexample.

- (2) On the last homework, you showed that for any metric space X, $C_0(X, \mathbb{R})$ is closed in $(B(X, \mathbb{R}), d_{\infty})$. Now, we make another definition. We say that a function $f : X \to \mathbb{R}$ is *compactly supported* if there exists a compact set $K \subseteq X$ such that for all $x \in K^c$, f(x) = 0. We define the set
 - $C_c(X, \mathbb{R}) = \{ f : X \to \mathbb{R} \mid f \text{ is continuous and compactly supported} \}.$
 - (a) Show that $C_c(X, \mathbb{R}) \subseteq C_0(X, \mathbb{R})$.
 - (b) Show that, in fact, $\overline{C_c(X,\mathbb{R})} = C_0(X,\mathbb{R})$, where the closure is taken with respect to the d_{∞} metric.
 - (c) In light of part (b), is $C_c(X, \mathbb{R})$ a closed set in $(B(X, \mathbb{R}), d_{\infty})$? Prove or give a counterexample.
- (3) Define $f_n : [1,2] \to \mathbb{R}$ by $f_n(x) = \frac{x}{(1+x)^{n+1}}$. Prove that $\sum_{n=0}^{\infty} f_n$ is uniformly convergent on [1,2].
- (4) (3.8.8 in Tao) Let $f:[0,1] \to \mathbb{R}$ be a continuous function, and suppose that for every non-negative integer n, we have that $\int_0^1 f(x)x^n dx = 0$. Prove that f(x) = 0 for all $x \in [0,1]$. (Hint: first show that $\int_0^1 f(x)P(x)dx = 0$ for every polynomial P, then use the Weierstrass approximation theorem to show that $\int_0^1 (f(x))^2 dx = 0$.)

In addition, I suggest that you study these problems from Tao:

- Section 3.6, problem 3.6.1
- Section 3.7, problem 3.7.2