Homework 7, due Wednesday, October 31

Please turn in well-written solutions for the following problems:
(1) Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of functions, $f_{n}:[0,1] \rightarrow \mathbb{R}$ such that for each $x \in[0,1], f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$. Suppose further that there exists a constant K such that for every n,

$$
\left|\int_{0}^{1} f_{n}(x) d x\right| \leq K
$$

Is it true that $\int_{0}^{1} f_{n}(x) d x \rightarrow 0$ as $n \rightarrow \infty$? Prove or give a counterexample.
(2) On the last homework, you showed that for any metric space $X, C_{0}(X, \mathbb{R})$ is closed in $\left(B(X, \mathbb{R}), d_{\infty}\right)$. Now, we make another definition. We say that a function $f: X \rightarrow \mathbb{R}$ is compactly supported if there exists a compact set $K \subseteq X$ such that for all $x \in K^{c}, f(x)=0$. We define the set
$C_{c}(X, \mathbb{R})=\{f: X \rightarrow \mathbb{R} \mid f$ is continuous and compactly supported $\}$.
(a) Show that $C_{c}(X, \mathbb{R}) \subseteq C_{0}(X, \mathbb{R})$.
(b) Show that, in fact, $\overline{C_{c}(X, \mathbb{R})}=C_{0}(X, \mathbb{R})$, where the closure is taken with respect to the d_{∞} metric.
(c) In light of part (b), is $C_{c}(X, \mathbb{R})$ a closed set in $\left(B(X, \mathbb{R}), d_{\infty}\right)$? Prove or give a counterexample.
(3) Define $f_{n}:[1,2] \rightarrow \mathbb{R}$ by $f_{n}(x)=\frac{x}{(1+x)^{n+1}}$.

Prove that $\sum_{n=0}^{\infty} f_{n}$ is uniformly convergent on $[1,2]$.
(4) (3.8.8 in Tao) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function, and suppose that for every non-negative integer n, we have that $\int_{0}^{1} f(x) x^{n} d x=0$. Prove that $f(x)=0$ for all $x \in[0,1]$. (Hint: first show that $\int_{0}^{1} f(x) P(x) d x=0$ for every polynomial P, then use the Weierstrass approximation theorem to show that $\int_{0}^{1}(f(x))^{2} d x=0$.)

In addition, I suggest that you study these problems from Tao:

- Section 3.6, problem 3.6.1
- Section 3.7, problem 3.7.2

