Homework 9, due Wednesday, December 5

Please turn in well-written solutions for the following problems:
(1) (5.2.6 in Tao) Let $f \in C(\mathbb{R} / \mathbb{Z}, \mathbb{C})$, and let $\left(f_{n}\right)_{n=1}^{\infty} \subset C(\mathbb{R} / \mathbb{Z}, \mathbb{C})$.
(a) Show that if $f_{n} \rightarrow f$ uniformly, then $f_{n} \rightarrow f$ in the L^{2} metric.
(b) Give an example where $f_{n} \rightarrow f$ in the L^{2} metric, but $f_{n} \nrightarrow f$ uniformly. (Hint: Take $f=0$ and modify an example from a previous homework problem.)
(c) Give an example where $f_{n} \rightarrow f$ in the L^{2} metric, but $f_{n} \nrightarrow f$ pointwise.
(d) Give an example where $f_{n} \rightarrow f$ pointwise, but $f_{n} \nrightarrow f$ in the L^{2} metric. (Hint: Take $f=0$ and again, consider the similar question from a previous homework.)
(2) (5.5.3 in Tao) Let $f, g \in C(\mathbb{R} / \mathbb{Z}, \mathbb{C})$. We defined the convolution $f * g$: $\mathbb{R} \rightarrow \mathbb{C}$ by the formula

$$
(f * g)(x)=\int_{0}^{1} f(y) g(x-y) d y
$$

In this exercise, you will show that the Fourier transform turns convolution into multiplication.
(a) If P is a trigonometric polynomial, prove that $\widehat{f * P}(n)=\widehat{f}(n) \widehat{P}(n)$.
(b) Prove that $\widehat{f * g}(n)=\widehat{f}(n) \widehat{g}(n)$.
(3) (5.5.4 in Tao) Suppose that $f \in C(\mathbb{R} / \mathbb{Z}, \mathbb{C})$ is differentiable and that f^{\prime} is continuous. Show that $f^{\prime} \in C(\mathbb{R} / \mathbb{Z}, \mathbb{C})$ and that $\widehat{f}^{\prime}(n)=2 \pi i n \widehat{f}(n)$ for any integer n.
(4) (5.5.5 in Tao) Let $f, g \in C(\mathbb{R} / Z, \mathbb{C})$. In this exercise, you will prove two more different related results that are also given the name Parseval's Identity.
(a) Show that

$$
\operatorname{Re}\left(\int_{0}^{1} f(x) \overline{g(x)} d x\right)=\operatorname{Re}\left(\sum_{n \in \mathbb{Z}} \widehat{f}(n) \overline{\widehat{g}(n)}\right)
$$

(Hint: Consider applying Plancherel's theorem to $f+g$ and $f-g$.)
(b) Conclude that

$$
\int_{0}^{1} f(x) \overline{g(x)} d x=\sum_{n \in \mathbb{Z}} \widehat{f}(n) \overline{\widehat{g}(n)}
$$

(Hint: apply (a) with f replaced by $i f$.)

In addition, I suggest that you study these problems from Tao:

- Section 4.7, problems 4.7.7, 4.7.10
- Section 5.1, problem 5.1.3
- Section 5.2, problems 5.2.1, 5.2.2, 5.2.3, 5.2.4, 5.2.5
- Section 5.3, problem 5.3.5
- Section 5.5, problems 5.5.1, 5.5.2

