Final Exam Material and Expectations

For the final exam, you should be able to do the following things:

Chapter 1.

- Add, subtract, multiply, and divide complex numbers
- Find complex conjugate, modulus, and argument of a complex number
- Convert between $x+i y$ form and polar form $r e^{i \theta}$
- Multiply, divide, and take powers and roots of complex numbers in polar form
- Solve basic equations in \mathbb{C}
- Sketch regions in the complex plane
- Determine whether regions are open, closed, connected, bounded, etc.

Chapter 3.

- Compute values of functions evaluated at complex numbers, including polynomials, rational functions, complex exponential, and branches of complex logarithms and radicals
- Write general form of a multivalued function such as logarithms or radicals in terms of an arbitrary integer n
- Determine largest domain of definition of a function

Chapter 2.

- Compute limits in \mathbb{C}, and determine when limits do not exist
- Compute limits involving the point at ∞
- Use derivative formulas for complex functions that mirror the formulas of the real analogues
- Use the Cauchy-Riemann equations to determine whether a complex function given in terms of real and imaginary parts is analytic at a point
- Use Cauchy-Riemann equations to find harmonic conjugates. That is, given $u(x, y)$ harmonic, find $v(x, y)$ harmonic such that $f(x, y)=u(x, y)+i v(x, y)$ is analytic

Chapter 4.

- Compute integrals of functions from \mathbb{R} to \mathbb{C}
- Write typical parametrizations of simple contours such as line segments or arcs of a circle
- Use parametrization to write an integral of a complex function over a contour in \mathbb{C} as an integral over a real interval:

$$
\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
$$

- Use the Cauchy-Goursat Theorem and related results:
- If f has an antiderivative F on a domain containing the contour C from z_{1} to z_{2}, then $\int_{C} f(z) d z=F\left(z_{2}\right)-F\left(z_{1}\right)$
$-f$ is analytic everywhere in a simply connected domain D if and only if f has an antiderivative on D
- If f is analytic on and inside a closed simple contour C, then $\int_{C} f(z) d z=$ 0
- Use the Cauchy Integral Formula: If f is analytic on and inside a simple closed positive contour C around a point z_{0}, then
$f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-z_{0}} d z$ and for any $n \in \mathbb{N}, f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z$

Chapter 5.

- Determine convergence/limit of sequences or series of complex numbers by comparing to the sequences or series of real and imaginary parts
- Use the geometric series and the Maclaurin series of $e^{z}, \sin (z)$, and $\cos (z)$:

$$
\begin{aligned}
& -\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n} \text { for }|z|<1 \\
& -e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \text { for any } z \in \mathbb{C} \\
& -\sin (z)=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1}}{(2 n+1)!} \text { for any } z \in \mathbb{C} \\
& -\cos (z)=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n}}{(2 n)!} \text { for any } z \in \mathbb{C}
\end{aligned}
$$

- Use the above Maclaurin series to write Laurent series of rational functions and functions involving exponentials and trig functions

Chapter 6.

- Find singularities of a function and determine whether they are removable, essential, poles, or non-isolated
- Compute the residue of a function at an essential singularity using Laurent series
- Compute the residue of a function at a pole of higher order by Laurent series or by writing $f(z)=\phi(z)\left(z-z_{0}\right)^{-m}$ and calculating

$$
\operatorname{Res}\left(f, z_{0}\right)=\frac{\phi^{(m-1)}\left(z_{0}\right)}{(m-1)!}
$$

- Compute the residue of a function at a simple pole by either of the above techniques, or using

$$
\operatorname{Res}\left(\frac{p(z)}{q(z)}, z_{0}\right)=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}
$$

- Compute integrals using the Cauchy Residue Theorem: If f has only finitely many singularities interior to a positive simple closed contour C, then

$$
\int_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}\left(f, z_{k}\right)
$$

Chapter 7.

- Use Cauchy Residue Theorem and semicircular contours to compute improper integrals of real-valued functions over \mathbb{R}
- Use Cauchy Residue Theorem, semicircular contours, and $e^{i x}$ to compute improper integrals from Fourier analysis
- Use Cauchy Residue Theorem, indented semicircular contours, and complex functions with branch cuts to compute improper integrals of real-valued functions with logarithms or radicals
- Use Cauchy Residue Theorem and substitutions for $\sin (\theta)$ and $\cos (\theta)$ to compute integrals of functions involving sin and cos over $[0,2 \pi]$

Chapter 8.

- Given two sets of three distinct points, find the unique Mobius transformation that maps the first set of points to the second set of points
- Given a function and a set S, determine the image set $f(S)$

