Homework 2, due Tuesday, February 1

Please turn in solutions for the following problems:
(1) Sketch each set and determine if each set is open, closed, connected, or bounded:
(a) $|2 z-4+6 i| \leq 4$
(d) $0 \leq \arg (z) \leq \pi / 4$
(b) $1<|z|<2$
(e) $(\operatorname{Re}(z))^{2}+1=(\operatorname{Im}(z))^{2}$
(c) $\operatorname{Re}(z)>\operatorname{Im}(z)$
(2) For each of the following functions, determine the largest possible domain of definition.
(a) $f(z)=\frac{1}{z^{2}+1}$
(b) $f(z)=\frac{z}{z-\bar{z}}$
(c) $f(z)=\frac{1}{1-|z|^{2}}$
(d) $f(z)=\operatorname{Arg}\left(\frac{1}{z}\right)$
(3) Consider the function $f(z)=\operatorname{Arg}(z)$, and let S be the horizontal line $\operatorname{Im}(z)=1$. Sketch the image set $f(S)$.
(4) Let $f(z)=e^{z}$. Compute each value. (Round to an appropriate number of decimal places if needed).
(a) $f(-1+i \pi)$
(b) $f(\pi / 2)$
(5) Consider the function $f(z)=e^{z}$, and let S be the vertical line $\operatorname{Re}(z)=1$. Sketch the image set $f(S)$.
(6) Let $f(z)=\log (z)$. Compute each value. (Write in terms of π if possible, but otherwise, round to an appropriate number of decimal places if needed).
(a) $f(\sqrt{3}-i)$
(b) $f(-4+4 i)$
(7) Consider the function $f(z)=\log (z)$, and let S be the right half-circle of radius 1 centered at 0 . That is, $S=\{z \in \mathbb{C}| | z \mid=1$ and $\operatorname{Re}(z) \geq 0\}$. Sketch the image set $f(S)$.

In addition, I suggest that you work these problems from the Brown/Churchill textbook (but do not turn in):

- Page 33, problems 1, 2, 3
- Page 44, problems 3, 4, 7
- Page 92, problems 1,8
- Page 97, problems 1, 2, 7

