HOMEWORK 3, DUE FRIDAY, FEBRUARY 26

Please turn in solutions for the following problems:

(1) Find each limit or explain why it does not exist:

(a)
$$\lim_{z \to -2i} \frac{z^3 - 8i}{z + 2i}$$
 (c) $\lim_{z \to \infty} \frac{4z^6 - 7z^3}{(z^2 - 4)^3}$
(b) $\lim_{z \to 8+i} \frac{1}{1 - \text{Im}(z)}$ (d) $\lim_{z \to \infty} \frac{|z|}{z}$

- (2) Use the rules for differentiation to find the derivative of each function.
 - (a) $f(z) = e^{z^3 z}$ (b) $f(z) = \cos^3(z^2)$ (c) $f(z) = \frac{z+1}{z+i}$, where $z \neq i$
 - (d) $f(z) = (\text{Log}(z))^3$, where z is not on the negative real axis
- (3) Let $g(z) = \overline{z}$. Write in the form g(x+iy) = u(x+iy)+iv(x+iy). Check the Cauchy-Riemann equations to determine if this function is differentiable.
- (4) Recall that we defined $\tan^{-1}(z) = \frac{i}{2} \log\left(\frac{i+z}{i-z}\right)$. Let $f(z) = \tan^{-1}(z)$, where we use the principal branch Log of the logarithm to define this as a single-valued function. Write in the form f(x+iy) = u(x+iy) + iv(x+iy). (That is, find u and v.) Then, check the Cauchy-Riemann equations to determine if this function is differentiable. If so, find the derivative, f'(z).
- (5) Suppose that f is an entire function such that f(z) = u(z) + iv(z), where $u(x + iy) = 2x^2 + 2x + 1 2y^2$. Determine what v must be.

In addition, I suggest that you work these problems from the Brown/Churchill textbook (but do not turn in):

- Pages 55-56, problems 3, 10
- Page 62, problem 1
- Page 71, problems 2, 4
- Pages 77, problems 1, 2
- Page 81, problem 1

Optional Proofs (not for credit):

- Define $u(x, y) = \sqrt{|xy|}$, and v(x, y) = 0 for all $x, y \in \mathbb{R}$. Define $f : \mathbb{C} \to \mathbb{C}$ by $f(x+iy) = \sqrt{|xy|}$. Show that f satisfies the Cauchy-Riemann equations at 0, but is not differentiable at 0.
- Let f be analytic on a domain D and suppose that f'(z) = 0 for all $z \in D$. Show that f is constant on D.
- Suppose f is analytic on a domain D and that $f'(z) = \alpha f(z)$ for all $z \in D$, for some constant $\alpha \in \mathbb{C}$. Show that f must be of the form $f(z) = Ce^{\alpha z}$ for some constant $C \in \mathbb{C}$.