Please turn in solutions for the following problems:
(1) Compute each of the following contour integrals:
(a) $\int_{C} e^{z} d z$, where C is the line segment from 0 to $1+i$
(b) $\int_{C} \frac{1}{z+4} d z$, where C is the circle of radius 1 centered at -4 traversed counterclockwise
(c) $\int_{C} z d z$, where C is the left semicircle from i to $-i$
(d) $\int_{C} z \bar{z} d z$, where C is the line segment from $-1+i$ to $1+5 i$
(e) $\int_{C} z^{3}-6 z^{2}+4 d z$, where C is any curve joining $-1+i$ to 1
(2) Suppose $f(z)$ is the principal branch of z^{i}. That is, $f(z)=e^{i \log (z)}$, for $-\pi<\operatorname{Arg}(z)<\pi$. Let C be the upper semicircle parametrized by $z(t)=e^{i t}$, for $0 \leq t \leq \pi$. Compute the integral $\int_{C} f(z) d z$.
(3) Let C be the positively oriented boundary of the square with corners at $2+2 i, 2-2 i,-2+2 i$, and $-2-2 i$. Evaluate each integral:
(a) $\int_{C} \frac{z}{2 z+1} d z$
(b) $\int_{C} \frac{\cos (z)}{z\left(z^{2}+8\right)} d z$
(4) Let C be the circle $|z-i|=2$, positively oriented. Evaluate each integral:
(a) $\int_{C} \frac{1}{z^{2}+4} d z$
(b) $\int_{C} \frac{1}{\left(z^{2}+4\right)^{2}} d z$

In addition, I suggest that you work these problems from the Brown/Churchill textbook (but do not turn in):

- Page 121, problems 2, 4
- Page 135, problems 1, 2, 4, 6
- Page 149, problems 1, 2
- Pages 160-161, problems 1, 2
- Pages 170-171, problems 1, 3, 4

Optional Proofs (not for credit):

- Let C be a contour with arc length L, and let f be a bounded function that is continuous on a domain containing C. Prove that

$$
\left|\int_{C} f(z) d z\right| \leq L \cdot \max _{z \in C}|f(z)|
$$

- Show that if C is a positively oriented simple closed contour, then the area A of the region enclosed by C can be written as

$$
A=\frac{1}{2 i} \int_{C} \bar{z} d z
$$

- Show that if f is analytic inside and on a simple closed contour C, and z_{0} is not on C, then

$$
\int_{C} \frac{f^{\prime}(z)}{z-z_{0}} d z=\int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z
$$

