Homework 4, due Friday, February 24

Please turn in solutions for the following problems:
(1) Find each limit or explain why it does not exist:
(a) $\lim _{z \rightarrow-2 i} \frac{z^{3}-8 i}{z+2 i}$
(c) $\lim _{z \rightarrow \infty} \frac{4 z^{6}-7 z^{3}}{\left(z^{2}-4\right)^{3}}$
(b) $\lim _{z \rightarrow 8+i} \frac{1}{1-\operatorname{Im}(z)}$
(d) $\lim _{z \rightarrow \infty} \frac{|z|}{z}$
(2) Use the rules for differentiation to find the derivative of each function.
(a) $f(z)=e^{z^{3}-z}$
(b) $f(z)=\cos ^{3}\left(z^{2}\right)$
(c) $f(z)=\frac{z+1}{z+i}$, where $z \neq i$
(d) $f(z)=(\log (z))^{3}$, where z is not on the negative real axis
(3) Let $g(z)=\bar{z}$. Write in the form $g(x+i y)=u(x+i y)+i v(x+i y)$. Check the Cauchy-Riemann equations to determine if this function is differentiable.
(4) Suppose that f is an entire function such that $f(z)=u(z)+i v(z)$, where $u(x+i y)=2 x^{2}+2 x+1-2 y^{2}$. Determine what v must be.
(5) Let w be a function from \mathbb{R} to \mathbb{C} defined by $w(t)=t^{2}-e^{i t}$.
(a) Compute the derivative $w^{\prime}(t)$.
(b) Compute the integral $\int_{0}^{3} w(t) d t$.

In addition, I suggest that you work these problems from the Brown/Churchill textbook (but do not turn in):

- Pages 55-56, problems 3, 10
- Page 62, problem 1
- Page 71, problems 2, 4
- Pages 77, problems 1, 2
- Page 81, problem 1
- Page 104, problem 9
- Page 121, problems 2, 4

