Homework 5, due Tuesday, March 29

Please turn in solutions for the following problems:

(1) Determine whether each series converges or diverges:

(a)
$$\sum_{n=1}^{\infty} \frac{n}{(2i)^n}$$

(b)
$$\sum_{n=1}^{\infty} e^{in}$$

(a)
$$\sum_{n=1}^{\infty} \frac{n}{(2i)^n}$$
(b)
$$\sum_{n=1}^{\infty} e^{in}$$
(c)
$$\sum_{n=1}^{\infty} \frac{(1+3i)^n}{4^n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{i^n}{\sqrt{n}}$$

(2) For each function, find the Taylor series expansion of the function centered at the specified point:

(a)
$$f(z) = z \sin(z^2)$$
 centered at $z = 0$

(b)
$$f(z) = \frac{1}{1-z}$$
 centered at $z = i$

(3) For each function, find the Laurent series expansion of the function on the specified domain:

(a)
$$f(z) = \frac{e^z - 1}{z^2}$$
 on the domain $|z| > 0$

(b)
$$f(z) = \frac{\sin(z)}{z^3}$$
 on the domain $|z| > 0$

(c)
$$f(z) = \frac{z+1}{z-1}$$
 on the domain $|z| > 1$

(d)
$$f(z) = e^{1/z^2}$$
 on the domain $|z| > 0$