Homework 8, Due ??

Consider the following problems:
(1) Consider the Mobius transformation f that maps the points $z_{1}=1, z_{2}=i$, and $z_{3}=\infty$ onto the points $w_{1}=0, w_{2}=-1$, and $w_{3}=2 i$.
(a) Find the values of a, b, c, and d such that $f(z)=\frac{a z+b}{c z+d}$.
(b) Does f map the real line to a line or a circle? Find the equation of the line, or the center and radius of the circle.
(2) Consider the Mobius transformation f that maps the points $z_{1}=i, z_{2}=-i$, and $z_{3}=1+i$ onto the points $w_{1}=2+i, w_{2}=i$, and $w_{3}=\infty$.
(a) Find the values of a, b, c, and d such that $f(z)=\frac{a z+b}{c z+d}$.
(b) Does f map the real line to a line or a circle? Find the equation of the line, or the center and radius of the circle.
(3) Consider the Mobius transformation $f(z)=\frac{z-2}{z}$. Let R be the closed disk $|z-1| \leq 1$. What is the image, $f(R)$?

