Homework 8, due ??

Consider the following problems:

- (1) Consider the Mobius transformation f that maps the points $z_1 = 1$, $z_2 = i$, and $z_3 = \infty$ onto the points $w_1 = 0$, $w_2 = -1$, and $w_3 = 2i$.
 - (a) Find the values of a, b, c, and d such that $f(z) = \frac{az+b}{cz+d}$.
 - (b) Does f map the real line to a line or a circle? Find the equation of the line, or the center and radius of the circle.
- (2) Consider the Mobius transformation f that maps the points $z_1 = i$, $z_2 = -i$, and $z_3 = 1 + i$ onto the points $w_1 = 2 + i$, $w_2 = i$, and $w_3 = \infty$.
 - (a) Find the values of a, b, c, and d such that $f(z) = \frac{az+b}{cz+d}$.
 - (b) Does f map the real line to a line or a circle? Find the equation of the line, or the center and radius of the circle.
- (3) Consider the Mobius transformation $f(z) = \frac{z-2}{z}$. Let R be the closed disk $|z-1| \le 1$. What is the image, f(R)?