Introduction to CAD

What Do Those Letters Mean to You?
Painting “The Big Picture”

- What is Computer-Aided Design (CAD)?
 - Creating drawings on a computer
 - Creating 3D shapes on a computer
 - Doing simulations
 - Finite Element Analysis
 - Dynamics
 - Fluid Flow
 - Visualization
 - Checking how things fit together to make sure they don’t interfere
 - Checking how product will look to the customer
The Design Process

- What is Computer-Aided Design (CAD)?
 Using computers to help execute the design process.
More Specific Definitions

• *Computer-Aided Design* (CAD) is the technology concerned with the use of computer systems to assist in the creation, modification, analysis, and optimization of a design. [Groover and Zimmers, 1984]

• *Computer-Aided Manufacturing* (CAM) is the technology concerned with the use of computer systems to plan, manage, and control manufacturing operations.

• *Computer-Aided Engineering* (CAE) is the technology concerned with the use of computer systems to analyze CAD geometry, allowing the designer to simulate and study how the product will behave.
Modern CAD/CAM/CAE practice

Information from all product lifecycle activities is available from a single database.

PLM System

Management

Component Design

Assembly Design

Motion Simulation

Structural Analysis

Other Physics Sim.

Production Planning

CNC Path Generation

Database

PDM System

Operations/Maintenance

Manuals

Customer Support

Marketing

Purchasing

Subcontracting

Marketing

Operations/Maintenance

Customer Support

Purchasing

Subcontracting

Management

Component Design

Assembly Design

Motion Simulation

Structural Analysis

Other Physics Sim.

Production Planning

CNC Path Generation
PDM and PLM

• **PDM** – **Product Data Management**
 is the activity of storing, retrieving, and controlling the use of digital product data shared by multiple users.

• **PLM** – **Product Lifecycle Management**
 is the strategic, integrated use of diverse software to support all product lifecycle activities of a manufacturing enterprise, from the conception of a product, through design, manufacturing, customer support, and product retirement.
Components of CAD Systems

CAD/CAM/CAE System

Hardware
- Computing machine
- Data storage devices
- Communication devices
- User input devices
- User output devices

Software
- Solid Modeling
- Assembly Modeling
- Motion Simulation
- Finite Element Analysis

...
Components of CAD Systems

• Input Devices

Image from YouTube

Image from Mitutoyo (UK) Ltd

MAE 455 Computer-Aided Design and Drafting
Components of CAD Systems

• Output Devices

Image from Interworld Electronics & Computer Industries Inc.

Image from InkSystem

Image from 3D Printing Geeks
Components of CAD Systems

• Integrated Input/Output Devices – Virtual Reality
Components of CAD Systems

- Integrated Input/Output Devices – Virtual Reality

Image from Thomas Publishing Company

Image from AtCrux

Image from www.middlevr.com

Image from Tech Times

Image from Geomagic

Image from IndiaMART InterMESH Ltd.

Image from Thomas Hulin
SolidWorks versus other CAD software

<table>
<thead>
<tr>
<th></th>
<th>Drafting</th>
<th>Solid/Ass. Modeling</th>
<th>Parametric Solid/Ass. Modeling</th>
<th>Integrated Simulation</th>
<th>Integrated Manufacturing</th>
<th>Integrated Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siemens PLM NX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro-Engineer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SolidWorks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autodesk Inventor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid Edge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AutoCAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAE 455 Computer-Aided Design and Drafting
SolidWorks vs. Autodesk
Inventor vs. Solid Edge

• Programs are similar but not equivalent:
 – Same class of software
 – Same types of tools available
 – Same general techniques used in each
 – Specific buttons, menus and input sequences different
 – Customer lists different

• Today vs. tomorrow
 – User interfaces will change
 – Fundamentals will stay the same
Course Goals

• Basic and Advanced Shape Modeling
• Parametric Modeling
• Working in Teams
• Advanced Top-Down Design Methodology
• Use of Solid Models for Downstream Applications
 – Design Documentation
 – Mechanism Analysis
 – Finite Element Analysis/Shape Optimization
 – Computer-Aided Manufacturing
Course Expectations

- Learning through doing (hands-on learning)
- Learning by studying theory
- Benefits from course
 - How to model products well, using state of the art CAD software
 - Understanding how computer is leveraged in design process