Introduction to CAD

What Do Those Letters Mean to You?
Painting “The Big Picture”

• What is Computer-Aided Design (CAD)?
The Design Process

• What is Computer-Aided Design (CAD)?
More Specific Definitions

- **Computer-Aided Design (CAD)** is the technology concerned with the use of computer systems to assist in the creation, modification, analysis, and optimization of a design. [Groover and Zimmers, 1984]

- **Computer-Aided Manufacturing (CAM)** is the technology concerned with the use of computer systems to plan, manage, and control manufacturing operations.

- **Computer-Aided Engineering (CAE)** is the technology concerned with the use of computer systems to analyze CAD geometry, allowing the designer to simulate and study how the product will behave.
Modern CAD/CAM/CAE practice

Information from all product lifecycle activities is available from a single database.
PDM and PLM

• PDM – is the activity of storing, retrieving, and controlling the use of digital product data shared by multiple users.

• PLM – is the strategic, integrated use of diverse software to support all product lifecycle activities of a manufacturing enterprise, from the conception of a product, through design, manufacturing, customer support, and product retirement.
Components of CAD Systems

CAD/CAM/CAE System

Hardware
- Computing machine
- Data storage devices
- Communication devices
- User input devices
- User output devices

Software
- Solid Modeling
- Assembly Modeling
- Motion Simulation
- Finite Element Analysis

MAE 455 Computer-Aided Design and Drafting
Components of CAD Systems

• Input Devices
Components of CAD Systems

- Output Devices

Image from Interworld Electronics & Computer Industries Inc.

Image from InkSystem

Image from 3D Printing Geeks
Components of CAD Systems

- Integrated Input/Output Devices – Virtual Reality
Components of CAD Systems

• Integrated Input/Output Devices – Virtual Reality

Image from Thomas Publishing Company
Image from AtCrux
Image from www.middlevr.com
Image from Tech Times
Image from Geomagic
Image from IndiaMART InterMESH Ltd.
Image from Thomas Hulin

MAE 455 Computer-Aided Design and Drafting
SolidWorks versus other CAD software

<table>
<thead>
<tr>
<th></th>
<th>Drafting</th>
<th>Parametric Modeling</th>
<th>Solid/Ass.</th>
<th>Integrated Manufacturing</th>
<th>Integrated Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siemens PLM NX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catia</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td></td>
<td>〇</td>
</tr>
<tr>
<td>Pro-Engineer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SolidWorks</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td></td>
<td>〇</td>
</tr>
<tr>
<td>Autodesk Inventor</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid Edge</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td></td>
<td>〇</td>
</tr>
<tr>
<td>AutoCAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SolidWorks vs. Autodesk
Inventor vs. Solid Edge

- Programs are similar but not equivalent:
 - Same class of software
 - Same types of tools available
 - Same general techniques used in each
 - Specific buttons, menus and input sequences different
 - Customer lists different

- Today vs. tomorrow
 - User interfaces will change
 - Fundamentals will stay the same
Course Goals

- Basic and Advanced Shape Modeling
- Parametric Modeling
- Working in Teams
- Advanced Top-Down Design Methodology
- Use of Solid Models for Downstream Applications
 - Design Documentation
 - Mechanism Analysis
 - Finite Element Analysis/Shape Optimization
 - Computer-Aided Manufacturing
Course Expectations

• Learning through doing (hands-on learning)
• Learning by studying theory
• Benefits from course
 – How to model products well, using state of the art CAD software
 – Understanding how computer is leveraged in design process