Geometry Idealization

• Most real-world parts have many geometric details that make them difficult to analyze directly in FEA.
 – FEA model would require very small elements in many places.
 – FEA model would have too many DOF to solve in a reasonable amount of time with a reasonable amount of memory.
• Therefore FEA is almost always performed using a separate “Idealized” CAD model.
Idealization Approaches

- Create idealized CAD model from scratch.

- Create copy of detailed CAD model and create/remove features.

- Create associative copy of detailed CAD model and create/remove features. (Detailed CAD model is called the Master Model.)

Major Shape Idealizations

- Prismatic structure regions should be represented using beam elements
 - Create center-line/curve by:
 - Associative line/curve (e.g., center point-to-center point line construction)
 - Sketch line/curve
 - Edge on solid model
 - Beam cross-section must be defined from within FEA application (associativity more difficult)
Major Shape Idealizations

- Thin wall regions should be represented using shell elements
 - Create surface by:
 - Associative surface (e.g., midsurface or offset surface construction)
 - Sheet body
 - Face on solid model
 - Thickness must be defined from within FEA application (associativity is possible)

Minor Detail Idealization

- Automatic Feature Removal Tools
 - Remove holes smaller than given radius.
 - Remove blends smaller than given radius.
Minor Detail Idealization

- Manual Feature Idealization
 1. Search for “tiny” objects (faces with dimension or angle smaller than given size)
 2. “Defeature” (removes selected faces; remaining faces merge together)

3. Create point or line/curve to replace detailed feature (if required to allow applying boundary conditions)
4. Split face at line/curve to create edge in solid (edge replaces curve)
Minor Detail Idealization

5. Merge small faces into large faces (becomes one large face)

Images from Siemens PLM NX Online Documentation.