Planar Problems

Structural problems that can be described in 2 dimensions.
Stresses on an Arbitrary Plane

• Example:

• Using Mohr’s Circle
Stresses on an Arbitrary Plane

\[
\begin{align*}
\sigma_n &= \sigma_x n_x^2 + 2\tau_{xy} n_x n_y + \sigma_y n_y^2 \\
\tau_n &= -\sigma_x n_x n_y + (n_x^2 - n_y^2)\tau_{xy} + \sigma_y n_x n_y
\end{align*}
\]

or

\[
\begin{align*}
\sigma_n &= \frac{1}{2}(\sigma_x + \sigma_y) + \frac{1}{2}(\sigma_x - \sigma_y)\cos(2\phi) + \tau_{xy} \sin(2\phi) \\
\tau_n &= -\frac{1}{2}(\sigma_x - \sigma_y)\sin(2\phi) + \tau_{xy} \cos(2\phi)
\end{align*}
\]

\[
n = n_x \hat{i} + n_y \hat{j} = \cos \phi \hat{i} + \sin \phi \hat{j}
\]
Principal Stresses

- Principal stresses occur on planes that have zero shear stress.
- For planar problems, this condition is:

\[-\sigma_x n_x n_y + \left(n_x^2 - n_y^2\right)\tau_{xy} + \sigma_y n_x n_y = 0\]

\[\tan(2\phi) = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}\]

\[n_x = \cos(\phi)\]

\[n_y = \sin(\phi)\]
Principal Stresses

• Maximum normal stress at a point

\[\sigma_1 = \]

• Minimum normal stress at a point

\[\sigma_2 = \]

• Maximum shear stress at a point

\[\tau_{\text{max}} = \]
Theories of Failure

• Ductile Material
 – Maximum Shear Stress Theory
 – Maximum Distortion Energy Theory
 • von Mises Stress
 \[
 \sigma_e = \left(\frac{1}{\sqrt{2}} \right) \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2}
 \]

• Brittle Material
 – Maximum Normal Stress Theory
 – Coulomb-Mohr Theory
Theories of Failure

Image from J.A. Collins, “Failure of Materials in Mechanical Design,” Wiley
Theories of Failure

Image from J.A. Collins, "Failure of Materials in Mechanical Design," Wiley
Theories of Failure

Image from J.A. Collins, "Failure of Materials in Mechanical Design," Wiley
Stress-Strain Relations

- The relationship between stress and strain is given by: \(\sigma = E \varepsilon + \sigma_0 \)

where:

\[
\sigma = \begin{cases}
\sigma_x \\ \sigma_y \\ \tau_{xy}
\end{cases} \quad \varepsilon = \begin{cases}
\varepsilon_x \\ \varepsilon_y \\ \gamma_{xy}
\end{cases}
\]

\(\sigma_0 \) is a pre-stress, where \(\sigma_0 = -E \varepsilon_0 \) and \(\varepsilon_0 \) is a pre-strain (usually zero; but would be non-zero for thermal strain, strain hardening, etc.).
Stress-Strain Relations

• The matrix E depends on what you assume is happening in the z direction.

• Two situations can be assumed:
 – plane stress ($\sigma_z = 0$), or
 – plane strain ($\varepsilon_z = 0$).
Plane Stress Problem

- A plane stress problem is one in which the cross-section is **free to move** in the z direction.
- The thickness in the z direction is normally small compared to the profile.
- \(\sigma_z = \tau_{yz} = \tau_{zx} = 0 \)

\[
E = \frac{E}{1-v^2} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & (1-v)/2 \end{bmatrix}
\]

for plane stress
Plane Stress Problem

• The inverse relationship (between strain and stress for plane stress) is given by:

\[\varepsilon = \mathbf{E}^{-1} \sigma + \varepsilon_0 \]

\[
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{bmatrix} =
\begin{bmatrix}
1/E & -\nu/E & 0 \\
-\nu/E & 1/E & 0 \\
0 & 0 & 1/G
\end{bmatrix}
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix} +
\begin{bmatrix}
\varepsilon_{x0} \\
\varepsilon_{y0} \\
\gamma_{xy0}
\end{bmatrix}
\]

\[G = \frac{E}{2(1+\nu)} \]
Plane Strain Problem

- A plane strain problem is one in which the cross-section is **restrained from moving** in the z direction.
- The thickness in the z direction is normally very large compared to the cross section.

- $\varepsilon_z = \gamma_{yz} = \gamma_{zx} = 0$
- $\gamma_{yz} = \gamma_{zx} = 0$ but $\sigma_z = \nu(\sigma_x + \sigma_y)$

\[
E = \frac{E}{(1 + \nu)(1 - 2\nu)} \begin{bmatrix}
(1-\nu) & \nu & 0 \\
\nu & (1-\nu) & 0 \\
0 & 0 & (1-2\nu)/2
\end{bmatrix}
\text{ for plane strain}
\]
Plane Strain Problem

- The inverse relationship (between strain and stress for plane strain) is given by:

\[\varepsilon = \mathbf{E}^{-1} \sigma + \varepsilon_0 \]

\[
\mathbf{E}^{-1} = \begin{bmatrix}
\frac{1-\nu^2}{E} & \frac{-\nu-\nu^2}{E} & 0 \\
\frac{-\nu-\nu^2}{E} & \frac{1-\nu^2}{E} & 0 \\
0 & 0 & \frac{1}{G}
\end{bmatrix}
\]

\[G = \frac{E}{2(1+\nu)} \]
Strain-Displacement Relations

\[\varepsilon_x = \frac{\partial u}{\partial x}, \quad \varepsilon_y = \frac{\partial v}{\partial y}, \quad \gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \]

\[
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
\text{or } \varepsilon = \partial u\]