Sketch the following discrete-time signals.

a) \(x[n] = u[n-5] - u[n-6] \)

Plot the two portions of the signal separately, and then subtract:

\[
\begin{align*}
&u[n-5] & & u[n-6] \\
&0 & & 0 & & \cdots & & 0 & & 0 & & \cdots \\
&1 & & 2 & & 3 & & 4 & & 5 & & 6 & & 7 & & n
\end{align*}
\]

b) \(x[n] = 10u[-n+2] - 5u[n-2] \)

\(10u[-n+2] \) turns on for \(-n+2 \geq 0 \Rightarrow n \leq 2\)

\[
\begin{align*}
&10u[-n+2] & & 5u[n-2] \\
&\cdots & & \cdots \\
&1 & & 2 & & 3 & & 4 & & 5 & & 6 & & n
\end{align*}
\]

Therefore, subtracting:

\[
\begin{align*}
&\cdots & & \cdots \\
&5 & & 5 & & 5 & & \cdots \\
&1 & & 2 & & 3 & & 4 & & 5 & & 6 & & n
\end{align*}
\]
c) \(x[n] = 4 \delta[n+5] + (n+5)u[n+3] - nu[n] \)

Plot each individual portion of this signal separately.

\[\begin{align*}
4\delta[n+5] & \quad \text{Shifted impulse function} \\
(n+5)u[n+3] & \quad \text{Shifted ramp function that starts at } n = -3 \\
-nu[n] & \\
\end{align*} \]

Add all together.

\[x[n] \]

d) \(x[n] = (0.1)^n \left(u[n] - u[n-5]\right) \)

A decreasing exponential that is only turned on for samples 0 through 4.

\[\begin{align*}
x[0] &= (0.1)^0 = 1 \\
x[1] &= (0.1)^1 = 0.1 \\
x[2] &= (0.1)^2 = 0.01 \\
x[3] &= (0.1)^3 = 0.001 \\
x[4] &= (0.1)^4 = 0.0001 \\
\end{align*} \]
A discrete-time signal, $x[n]$, is shown below. Sketch the following signals:

\[x[n] \]

\[\begin{array}{c}
\text{-5} & \text{-4} & \text{-3} & \text{-2} & \text{-1} & 1 & 2 & 3 & 4 & 5 & n
\end{array} \]

\[\begin{array}{c}
\text{-2}
\text{-1}
\text{1}
\end{array} \]

a) $y[n] = x[n-3]$

- delayed by 3 samples

\[x[n-3] \]

\[\begin{array}{c}
\text{-5} & \text{-4} & \text{-3} & \text{-2} & \text{-1} & 1 & 2 & 3 & 4 & 5 & 6 & n
\end{array} \]

\[\begin{array}{c}
\text{-2}
\text{-1}
\text{1}
\end{array} \]

b) $y[n] = x[3-n]$

- There is both time reversal and time shifting

: Let $v[n] = x[-an]$

Then $y[n] = v[n+b] = x[-a(n+b)] = x[an + ab]$

Matching terms

\[a = -1 \]
\[b = 3 \]

$y[n] = v[n-3] = x[-n+3]$

- delayed version of $v[n]$

\[\begin{array}{c}
\\text{...}
\text{-2}
\text{-1}
\text{1}
\text{2}
\text{3}
\text{4}
\text{5}
\text{6}
\end{array} \]

\[\begin{array}{c}
\text{-2}
\text{-1}
\text{1}
\text{2}
\text{3}
\text{4}
\end{array} \]
c) \[y[n] = x[3n] \]

This is time scaling, also known as subsampling in the discrete-time domain. This subsampling is valid because 3 is an integer, and we must ensure that 3n is an integer (the argument of x must be an integer). Therefore, we are subsampling at a rate of 3, meaning that the output, \(y[n] \), only looks at every third value of \(x[n] \).

Simply put, we can plug in values of \(n \) (integer values) into \(x \) to get the resulting values of \(y[n] \).

For example,

Let \(n = 0 \)
\[
\begin{align*}
y[0] &= x[3 \cdot 0] = x[0] = 1
\end{align*}
\]

Let \(n = 1 \)
\[
\begin{align*}
\end{align*}
\]

Let \(n = 2 \)
\[
\begin{align*}
\end{align*}
\]

Also, let \(n = -1 \)
\[
\begin{align*}
y[-1] &= x[3 \cdot (-1)] = x[-3] = -2
\end{align*}
\]

\[y[n] \]

Again, we are simply taking every third sample value of \(x \) to determine the values of \(y \).
d) \(y[n] = x[3n+1] \)

This transformation includes both time scaling and time shifting.

Let \(u[n] = x[n+b] \)

Then \(y[n] = u[an] = x[an+b] \)

Matching terms

\[
\begin{align*}
 a &= 3 \\
 b &= 1 \\
 u[n] &= x[n+1]
\end{align*}
\]

Now, we subsample at a rate of 3

For example, plugging in values of \(n \), we get

Let \(n = 0 \)

\[
y[0] = u[3(0)] = x[3(0)+1] = u[1] = x[1] = 1
\]

Let \(n = 1 \)

\[
\]

Let \(n = -1 \)

\[
y[-1] = u[3(-1)] = x[3(-1)+1] = u[0] = x[-2] = -1
\]

(or we could simply look at the plots and do this by inspection)

\[
y[n] = u[3n] = x[3n+1]
\]
e) \(y[n] = x[n] \cdot u[3-n] \)

This is the multiplication of two signals. First, let us find out what \(u[3-n] \) is:

\[
u[3-n] = \begin{cases}
1 & 3-n \geq 0 \Rightarrow n \leq 3 \\
0 & 3-n < 0
\end{cases}
\]

\[\Rightarrow u[3-n] \text{ is given by the following plot} \]

\[
\begin{array}{c}
\ldots \\
\vdots \\
3 \\
\vdots \\
n \\
\end{array}
\]

We also notice from the plot of \(x[n] \) that all the values of \(x[n] \) for \(n > 3 \) are zero.

\[\Rightarrow y[n] = x[n] \cdot u[3-n] = x[n] \]

\[
\begin{array}{c}
y[2] \\
y[1] \\
y[0] \\
y[-1] \\
y[-2] \\
\vdots \\
-2 \\
\end{array}
\]

\[
\begin{array}{c}
-1 \\
0 \\
1 \\
2 \\
3 \\
4 \\
5 \\
n \\
\end{array}
\]
f) \[y[n] = x[n-2] \delta[n-2] \]

This is the multiplication of two signals—one is a delayed version of \(x[n] \) and the other is a unit pulse function.

(This is also the shifting property for the discrete-time domain)

\[
\begin{array}{c}
x[n-2] \\
\hline
-3 & -2 & 1 & 2 & 3 & 4 & 5 \\
\end{array}
\]

\[
\begin{array}{c}
\delta[n-2] \\
\hline
2 & \ldots & \ldots & \ldots & \ldots & n \\
\end{array}
\]

\[
\begin{array}{c}
y[n] \\
\hline
2 & \ldots & \ldots & \ldots & \ldots & n \\
\end{array}
\]

Alternatively, plug in the sample value of the only non-zero value of the unit pulse function.

Let \(n = 2 \)

\[y[2] = x[2-2] \delta[2-2] = x[0] (1) = 1 \]

All other values of \(n \) produce a 0 valued output from \(\delta \) and, thus, \(y[n] \)
9) \(y[n] = x[(n-1)^2] \)

The simplest way to determine this output is to plug in values of \(n \).

Let \(n = 0 \)
\[
y[0] = x[(0-1)^2] = x[1] = 1
\]

Let \(n = 1 \)
\[
y[1] = x[(1-1)^2] = x[0] = 1
\]

Let \(n = 2 \)
\[
\]

Let \(n = 3 \)
\[
\]

Also for negative values of \(n \)

Let \(n = -1 \)
\[
y[-1] = x[(-1-1)^2] = x[4] = 0
\]

Let \(n = -2 \)
\[
y[-2] = x[(-2-1)^2] = x[9] = 0
\]

Therefore, \(y[n] \) can be sketched as

\[
y[n]
\]

\[
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & n \\
\end{array}
\]
The following continuous-time signal is to be discretized. What is the minimum sampling frequency that must be used in order to avoid aliasing?

\[x(t) = 1 + 5 \cos (2\pi(10) t) + 10 \cos (2\pi(100) t) \]

Solution

\[x(t) \] contains frequency components at 0 Hz, 10 Hz, and 100 Hz.

\[\therefore \text{Nyquist Rate} \Rightarrow f_{\text{ns}} = 2 \max(f) = 2(100 \text{ Hz}) = 200 \text{ Hz} \]

\[x(t) \] must be sampled at a frequency \(> 200 \text{ Hz} \)

(Good practice \(\Rightarrow f_s \geq 20 f_{\text{ns}} = 4 \text{ kHz} \))
Determine if the following system properties are valid.

\[y(t) = x(-t) \] Causal?

Let \(y(-t) = x(1) \) ⇒ Input precedes output

\[\text{Not Causal} \]

\[y(t) = (t+5)x(t) \] Memoryless?

Output only depends on "t" and current state of \(x(t) \)

\[\text{Memoryless} \]

\[y(t) = x(5) \] Memoryless?

⇒ Always depends on a particular value of \(x(t) \) ⇒ \(t = 5 \)
⇒ Could be looking to past, present, or future

\[\text{Has Memory} \]

\[y(t) = 2x(t) \] Stable (BIBO)?

If \(|x(t)| \leq B_1 \) ⇒ Some boundary \(B_1 \)
then \(|y(t)| \leq B_2 \)
where \(B_2 = 2B_1 \)

\[y(t) \text{ will always be } \leq B_2 = 2B_1 \text{ for all input bounded by } B_1 \]

\[\text{Stable} \]
Determine if the following system properties are valid:

\[y(t) = x(t) + a \quad \text{Linear?} \]

Homogeneity Test

\[S \{ K x(t) \} = K x(t) + a \]

\[K y(t) = K (x(t) + a) = K x(t) + K a \]

\[S \{ K x(t) \} \neq K y(t) \]

Nonlinear

\[y(t) = t x(2t) \]

Homogeneity Test

\[S \{ K x(t) \} = K t x(2t) \]

\[K y(t) = K t x(2t) \]

\[S \{ K x(t) \} \neq K y(t) \quad \Rightarrow \text{Passes Homogeneity Test} \]

Additivity Test

\[S \{ x_1(t) + x_2(t) \} = t \left(x_1(2t) + x_2(2t) \right) = t x_1(2t) + t x_2(2t) \]

Let \(y_1(t) = t x_1(2t) \)

\(y_2(t) = t x_2(2t) \)

\(y(t) = y_1(t) + y_2(t) = t x_1(2t) + t x_2(2t) \)

\[S \{ x_1(t) + x_2(t) \} = y_1(t) + y_2(t) \]

\[\Rightarrow \text{Passes Additivity Test} \]

Linear
Determine if the following system properties apply.

\[y(t) = \int_0^T x(t - \tau) \, d\tau \quad \text{Time Invariant?} \]

\[y(t) = \int_0^T x(t - \tau) \, d\tau = \int_0^T x(t - td - \tau) \, d\tau \]

\(\Rightarrow \) They are equal

Time Invariant

\[y(t) = x(2t) \quad \text{Time Invariant?} \]

\[y(t) = x(2t - td) = x(2(t - td)) \]

\(\Rightarrow \) They are not equal!

Time Varying
Determine the following properties of the given discrete-time system:

1. Causality
2. Memory
3. Stability
4. Linearity
5. Time Invariance
6. LTIS

Let \(y[n] = \left(\frac{n+0.5}{n-0.5} \right)^2 x[n] \)

1. Causal: only depends on present value of \(n \rightarrow x[n] \)
2. Memoryless: only depends on present value of \(n \rightarrow x[n] \)
3. Stability

Let all inputs \(|x[n]| < M \)

\[
\lim_{n \to \infty} y[n] = \lim_{n \to \infty} \left(\frac{n+0.5}{n-0.5} \right)^2 (M) \rightarrow M
\]

Maximum for \(y[n] \) (for \(n>0 \))

\[
y[1] = \left(\frac{1.5}{0.5} \right)^2 M = 9M
\]

\[
|y[n]| \leq 9M = R \rightarrow \text{Bounded} \rightarrow \text{Stable}
\]

4. Linearity

Additivity Test

Let \(x_1[n] \rightarrow y_1[n] = \left(\frac{n+0.5}{n-0.5} \right)^2 x_1[n] \)

Let \(x_2[n] \rightarrow y_2[n] = \left(\frac{n+0.5}{n-0.5} \right)^2 x_2[n] \)

\[
x_1[n] + x_2[n] \rightarrow \left(\frac{n+0.5}{n-0.5} \right)^2 \left[x_1[n] + x_2[n] \right] = y_1[n] + y_2[n] \rightarrow \text{Additive}
\]

Homogeneity Test

Let \(x[n] \rightarrow y[n] = \left(\frac{n+0.5}{n-0.5} \right)^2 x[n] \)

Let \(a x[n] \rightarrow a \left(\frac{n+0.5}{n-0.5} \right)^2 x[n] = a y[n] \rightarrow \text{Homogeneous}
\]

\[\therefore \text{Linear}\]
5. **Time Invariance**

![Diagram](image)

Apply \(n \rightarrow n - n_d \) to all \(n \).

They do not agree

Time Varying

6. **LTI?**

Not LTI. It is time varying.