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Continuous-Time Signals

•
 

Continuous-Time Signals
–

 
Time is a continuous variable

–
 

The signal itself need not be continuous

•
 

We will look at several common 
continuous-time signals and also 
operations that may be performed on them
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Unit Step Function u(t)
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•

 

Used to characterize systems
•

 

We will use u(t) to illustrate the properties of continuous-time signals
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Unit Impulse/Delta Function δ(t)

•
 

Used for complete characterization of systems
•

 
Response of a system to δ(t) allows us to know 
the response to all signals

•
 

Can approximate any arbitrary waveform/signal
•

 
Not a function

•
 

It is a distribution
•

 
Difficult to make in reality, but it can be 
approximated
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Unit Impulse/Delta Function δ(t)
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Properties of δ(t)
Sifting Property
•

 
Samples an arbitrary waveform at a given time instance

•
 

Given an arbitrary function f(t) and an impulse δ(t –
 

td
 

), 
we can find the instantaneous value of f(td

 

)
–

 

Multiply the two signals together
–

 

Integrate because δ(t) is a distribution
f(t)
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Dummy variable of integration

Because δ(t) = 0 for all values but td

Can use this property to sample a CT signal to the DT domain
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Sifting Property
For a delayed version of f(t) f(t – t1), the sifting property 

gives us a delayed version of the instantaneous value
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ex.  Find the instantaneous value (sample) of x(t) = sin2(t/b) at time t=a
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Properties of δ(t)

Relationship to the Step Function
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Ramp Functions

•
 

x(t) = t
•

 
Shifted ramp = B(t

 
–

 
td

 

)

•
 

Unit ramp function, r(t)
–

 
“Starts”

 
at a given time
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Exponential Signals

•
 

x(t) = Ceat

•
 

if “C”
 

and “a”
 

are real

•
 

If “a”
 

is imaginary
t

a>0a<0
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Periodic Signals
Signal that repeats itself every T seconds

T=period of the signal
A signal is periodic if 

x(t) = x(t + T), where T>0 for all “t”
Therefore, replace “t” with “t+T”
x(t + T) = x(t + 2T)
Also, x(t) = x(t + nT), n = integer

Fundamental period = minimum T that satisfies 
x(t) = x(t + T)

T0
f0 = 1/T0
ω0 = 2πf0 = 2π/T0
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Periodic Signals
ex.  Is x(t) periodic?  If so, find the fundamental period of x(t)

x(t) is periodic with fundamental period T0

 

= 4

because x(t) = x(t
 

+ 4) for all values of “t”

1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

x(t)
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Periodic Signals
Time scaling applied to periodic signals
•

 
Let y(t) = x(at)

•
 

y(t) has period = T/|a|

1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

x(t)

ex.  Let y(t) = x(2t), sketch y(t) and find the fundamental period of y(t)

The period of y(t), Ty

 

= T/|2| = 4/|2| = 2

1 2 3 4 5 6 7 t

y(t)
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Periodic Signals

ex.  What is an equation for x(t)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

x(t)

Remember, Tx

 

= 4, so everything repeats every 4 seconds
Therefore, look at only one period
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Sinusoidal Waveforms
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Sinusoidal Waveforms

Time Shift
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Sinusoidal Waveforms

ex.  What is the time delay of x(t)?  
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Operations of CT Signals

1.
 

Time Reversal
 

y(t) = x(-t)
2.

 
Time Shifting

 
y(t) = x(t-td

 

)
3.

 
Amplitude Scaling

 
y(t) = Bx(t)

4.
 

Addition
 

y(t) = x1

 

(t) + x2

 

(t)
5.

 
Multiplication

 
y(t) = x1

 

(t)x2

 

(t)
6.

 
Time Scaling

 
y(t) = x(at)
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