\qquad

RULES

This is a closed book, closed notes test. You are, however, allowed one half of one piece of paper (front side only) for notes and definitions, but no sample problems. You must staple your equations sheet to the back of your test when you hand your test in.

You are permitted to use a calculator.
You have 50 minutes to complete the test. Please read through the entire test before starting, and read through the directions carefully. To receive partial credit, you must show your work.

There is to be absolutely no cheating. Cheating will not be tolerated.
I you have any questions, please raise your hand, and I will come to you to answer them. Do not hesitate to ask questions.

Problem	Value	Score
1	10	
2	20	
3	20	
4	25	
5	25	
Total	100	

\qquad

PROBLEM 1

Use the following signal for Parts A and B.

A. Determine whether or not this signal is periodic. You must clearly justify your answer to receive full credit. If the signal is period, what is the fundamental frequency?
B. If you need to sample this signal, determine the condition on the sampling rate that guarantees that there will be no aliasing when sampling this particular signal.

EE 327 Signals and Systems 1 Test 1

Name \qquad
PROBLEM 2
You are given the following discrete-time signal, $\mathrm{x}[\mathrm{n}]$.

A. Plot the following signal.
(10 Points)

$$
y[n]=3 x[-n-2]
$$

EE 327 Signals and Systems 1 Test 1

Name \qquad
B. Plot the following signal.

$$
y[n]=-4 x[2 n]
$$

\qquad

PROBLEM 3
(20 Points)
Determine the properties of the following system. Choose one property from each column, and circle the appropriate property. You must show your work to receive partial credit.

$$
y(t)=10 \cos \left(t x^{2}(t)\right)
$$

Column 1	Column 2	$\underline{\text { Column 3 }}$	Column 4	Column 5
Causal	Has Memory	Stable	Linear	Time
		(BIBO)		Invariant
OR	OR	OR	OR	OR
Non Causal	Memoryless	Unstable	Nonlinear	Time Varying

\qquad
A. What is the mathematical definition of the convolution sum (i.e. an equation)? (3 Points)
B. Determine the output, $y[n]$, of the system to the input signal, $x[n]$, if the system is defined by the impulse response, $\mathrm{h}[\mathrm{n}]$. Write an expression for $\mathrm{y}[\mathrm{n}]$ and also sketch $\mathrm{y}[\mathrm{n}]$.
(20 Points)

\qquad

- Extra Room for Part B -

C. If you were to find $\mathrm{y}[\mathrm{n}]$ using Matlab, provide the line(s) of code that would be used to write the result to variable yy. Assume that the coefficients of $x[n]$ and $h[n]$ have already been entered into the Matlab workspace and are represented by the variables $x x$ and hh. If any necessary information is missing that is needed to find this output, describe what that information is and how it should be incorporated into your Matlab code.
\qquad

PROBLEM 5

(25 Points)
Use the impulse response, $\mathrm{h}(\mathrm{t})$, and input, $\mathrm{x}(\mathrm{t})$, shown below to find the output signal, $\mathrm{y}(\mathrm{t})$. Write your summary solution in the box provided below (you must write your solution here to receive full credit). You must also provide a sketch of $\mathrm{y}(\mathrm{t})$; be as detailed as possible. The sketch should also be in the box.

Answer

EE 327 Signals and Systems 1 \square 正

- Problem 5 Work Page -

EE 327 Signals and Systems 1 Test 1

Name \qquad
September 18, 2015

- Problem 5 Work Page -

