\qquad

RULES

This is a closed book, closed notes test. You are, however, allowed one piece of paper (front side and half of the back side only) for notes and definitions, but no sample problems. The front side should be the same as from the second test, and the top half of the reverse side contains the information added for the third test. You must staple your definitions sheet to the back of your test when you hand your test in. You are also permitted to use a calculator. Additionally, tables of common transforms have been provided at the end of this test.

You have 50 minutes to complete the test. Please read through the entire test before starting, and read through the directions carefully. To receive partial credit, you must show your work.

There is to be absolutely no cheating. Cheating will not be tolerated.
I you have any questions, please raise your hand, and I will come to you to answer them. Do not hesitate to ask questions.

Problem	Value	Score
1	25	
2	30	
3	20	
4	25	
Total	100	

\qquad

PROBLEM 1

A system is defined by the following transfer function.

$$
H(s)=\frac{1,000 s^{2}+10,000 s}{s^{2}+100 s+1,000,000}
$$

Determine all zeros, poles, and corner frequencies, and write them on the lines that have been provided. Also, plot the frequency response (Bode plot - both magnitude and phase) of this system on the semilog paper on the following page. Only asymptotic responses are required. Clearly label all important points and all slopes. Clearly indicate which trace is the overall magnitude and phase (summation of the parts).

Zeros
Poles

Corner Frequencies

\qquad

PROBLEM 2
(30 Points)
For the following continuous-time filter, whose frequency response is shown in the following figure, determine the following (see below). You must write your answer on the lines provided below. Write all values as scalar numbers (not dB values). Only determine the Q of the filter if it is applicable (for example, only if there is a Q); otherwise, write N/A for not applicable. (Point values are indicated in parentheses below.)

Filtering operation
Order of the filter

Determine ω_{0}
Determine Q (if applicable)
Passband gain

Transfer function of the filter (5)
Steady-state response to $x(t)=10 \cos (10 t)+\cos \left(100 t+90^{\circ}\right)$
(write on the line below)
\qquad

EE 327 Signals and Systems 1 Test 3

Name \qquad
November 19, 2014
Problem 2 Work Page
\qquad
PROBLEM 3
(20 Points)
For each system below, determine the filtering operation (e.g. lowpass, etc.) and the order of the filter (e.g. first order, etc.). Write your answers on the lines provided. Point values are shown in parentheses.
A.

Filtering Operation
(2)

Filter Order
(2)
B.

Filtering Operation
(2)

Filter Order
(2)
\qquad
C. $H(s)=\frac{1000 s}{s^{2}+1000 s+100}$

Filtering Operation
Filter Order
(2)
D. $H(s)=\frac{1000}{(s+10)^{3}}$

Filtering Operation
(2)

Filter Order
(2)
E.

Filtering Operation
(2)

Filter Order
(2)
\qquad

PROBLEM 4
November 19, 2014

Find the following transforms.
A. Find the z transform of $\mathrm{x}[\mathrm{n}]$. Write as a rational function of ' z ' and simplify where applicable.

$$
x[n]=2 \delta[n]+4 \delta[n-1]+6 \delta[n-2]
$$

B. Find the z transform of $x[n]$. Write as a rational function of ' z ' and simplify where applicable.

$$
x[n]=5\left(\frac{1}{2}\right)^{n} u[n]
$$

C. Let $v[n]$ have a z transform of $V(z)=\frac{z}{z-0.5}$

Find the z transform of $x[n]=(2)^{n} v[n]$. Write as a rational function of ' z ' and simplify where applicable.
\qquad
D. Find the inverse z transform of $\mathrm{X}(\mathrm{z})$.

$$
X(z)=\frac{4 z}{\left(z+\frac{1}{2}\right)\left(z+\frac{1}{3}\right)}
$$

