EE 551 Linear Integrated Circuits Homework 3

Unless otherwise specified, use the following transistor parameters.
$\mathrm{V}_{\mathrm{T} 0}=0.7 \mathrm{~V}, \gamma=0.45 \mathrm{~V}^{1 / 2}, 2 \varphi_{\mathrm{F}}=0.9 \mathrm{~V}, \kappa_{\mathrm{n}}=\kappa_{\mathrm{p}}=0.65$ (subthreshold), $\mu_{\mathrm{n}}=1360 \mathrm{~cm}^{2} / \mathrm{Vs}, \mu_{\mathrm{p}}=460 \mathrm{~cm}^{2} / \mathrm{Vs}, \mathrm{K}=$ $100 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{I}_{0}=1 \mathrm{pA}, \mathrm{I}_{\mathrm{th}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{A}}=50 \mathrm{~V}, \mathrm{~K}_{\mathrm{s}}=11.8, \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}, \mathrm{T}=300 \mathrm{~K}, \mathrm{~V}_{\mathrm{dd}}=5 \mathrm{~V}$

1. Determine the current flowing through each transistor.

(a)

(b)

(c)

(d)

(e)
2. Determine the DC operating point of each transistor (i.e. determine the voltage at each node and the current flowing into/out of each node).

(a)

(b)
3. Create a resistive element from a transistor using the following information and the figures for the respective parts.

(a)

(b)
a. What value of transistor width causes the transistor to have a resistance of 100Ω if $\mathrm{C}_{\mathrm{ox}}=$ $347 \mathrm{nF} / \mathrm{cm}^{2}, \mathrm{~L}=1 \mu \mathrm{~m}$, and V_{d} is such that the transistor is operating in the deep ohmic region?
b. Determine the bias voltage required to create a $2.5 \mathrm{k} \Omega$ resistance, assuming $\mathrm{K}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$.
4. Use the following figures for Parts a and b . For both parts, assume that $\gamma=\lambda=0$ and also $\mathrm{I}_{0}=0$ (no subthreshold current).

(a)

(b)
a. Determine $\mathrm{V}_{\text {out }}$ when sweeping $\mathrm{V}_{\text {in }}$ from ground to $\mathrm{V}_{\text {dd }}$ (expressions and a sketch of values) for Figure a.
b. Determine the channel current as V_{x} is swept from ground to V_{dd} (expressions and a sketch of values) for Figure b.
