EE 551 Linear Integrated Circuits Homework 4

Unless otherwise specified, use the following transistor parameters.
$\mathrm{V}_{\mathrm{T} 0}=0.7 \mathrm{~V}, \gamma=0.45 \mathrm{~V}^{1 / 2}, 2 \varphi_{\mathrm{F}}=0.9 \mathrm{~V}, \kappa_{\mathrm{n}}=\kappa_{\mathrm{p}}=0.65$ (subthreshold), $\mu_{\mathrm{n}}=1360 \mathrm{~cm}^{2} / \mathrm{Vs}, \mu_{\mathrm{p}}=460 \mathrm{~cm}^{2} / \mathrm{Vs}, \mathrm{K}=$ $100 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{I}_{0}=1 \mathrm{pA}, \mathrm{I}_{\mathrm{th}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{A}}=50 \mathrm{~V}, \mathrm{~K}_{\mathrm{s}}=11.8, \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}, \mathrm{T}=300 \mathrm{~K}, \mathrm{~V}_{\mathrm{dd}}=5 \mathrm{~V}$

1. Determine the small-signal voltage gain of the following two amplifiers and the maximum voltage ${ }_{4}{ }^{2}$ ing (assuming both transistors are saturated). Assume that $\mathrm{W}_{1} / \mathrm{L}_{1}=50 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m}, \mathrm{~K}_{\mathrm{n}}{ }^{\prime}=1.34 \times 10^{-}$ ${ }^{4} \mathrm{~A} / \mathrm{V}^{2}$, and $\mathrm{K}_{\mathrm{p}}{ }^{\prime}=4.0 \times 10^{-5} \mathrm{~A} / \mathrm{V}^{2}$, and $\mathrm{VA}=50 \mathrm{~V}$ for a transistor with length of $0.5 \mu \mathrm{~m}$.
a. Let $W_{2} / L_{2}=10 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m}$ and $\mathrm{I}_{\mathrm{D} 1}=\mathrm{I}_{\mathrm{D} 2}=10 \mathrm{nA}$.
b. Let $\mathrm{W}_{2} / \mathrm{L}_{2}=50 \mu \mathrm{~m} / 2 \mu \mathrm{~m}$ and $\mathrm{I}_{\mathrm{D} 1}=\mathrm{I}_{\mathrm{D} 2}=500 \mu \mathrm{~A}$.

(a)

(b)
2. Determine expressions for the voltage gain of each of the following amplifiers. For (a) and (b), also determine the input impedance, output impedance, and transconductance.

(a)

(b)

(e)
3. For amplifier (c) in the previous problem, sketch $V_{\text {out }}$ versus $V_{\text {in }}$ as $V_{\text {in }}$ is swept from ground to $V_{\text {dd }}$. Assume $10=0$ (i.e. no subthreshold current).
