EE 551 Linear Integrated Circuits Homework 6

Unless otherwise specified, use the following transistor parameters.

$$
\begin{gathered}
\mathrm{V}_{\mathrm{T} 0}=0.7 \mathrm{~V}, \gamma=0.4 \mathrm{~V}^{1 / 2}, \varphi_{\mathrm{F}}=0.35 \mathrm{~V}, \kappa_{\mathrm{n}}=\kappa_{\mathrm{p}}=0.65(\text { subthreshold }), \mu_{\mathrm{n}}=1360 \mathrm{~cm}^{2} / \mathrm{Vs}, \mu_{\mathrm{p}}=460 \mathrm{~cm}^{2} / \mathrm{Vs}, \mathrm{~K}^{\prime}= \\
100 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{I}_{0}=1 \mathrm{pA}, \mathrm{I}_{0}{ }^{\prime}=0.1 \mathrm{pA}, \mathrm{I}_{\mathrm{th}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{A}}=50 \mathrm{~V}, \mathrm{~K}_{\mathrm{s}}=11.8, \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}, \mathrm{~T}=300 \mathrm{~K}, \mathrm{~V}_{\mathrm{dd}}=5 \mathrm{~V}, \\
\mathrm{~V}_{\mathrm{bi}}=0.7 \mathrm{~V},
\end{gathered}
$$

1. For an nFET-based differential paire, answer the following questions. Assume that the input pair have $\mathrm{W} / \mathrm{L}=50 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m}, \mathrm{I}_{\mathrm{b}}=1 \mathrm{~mA}$, and that $\lambda=0$.
a. What is the overdrive voltage of each transistor if $\mathrm{V}_{\text {in }}=0$?
b. How is the bias current shared between the two input transistors if $\mathrm{V}_{\text {in }}=50 \mathrm{mV}$?
c. For $I_{\text {out }}=I_{1}-I_{2}$ and $V_{\text {in }}=50 \mathrm{mV}$, what is the effective transconductance of the differential pair? Assume that this input voltage is within the linear range of the circuit.
2. Calculate expressions for the small-signal differential voltage gain of each of the following circuits.

3. For the following circuit, determine the following. Assume that $\mathrm{M} 1-4$ have W / L ratios of $50 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m}$, $\mathrm{lb}=1 \mathrm{~mA}$, and $\gamma=0$.

a. Determine the small-signal differential voltage gain.
b. Determine the maximum allowable output voltage swing of $\mathrm{V}_{\mathrm{in}, \mathrm{cm}}=1.5 \mathrm{~V}$.
4. Calculate the following parameters given that $I_{b 1}=100 \mathrm{nA}, \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}, \mathrm{M}_{1-10}$ and $\mathrm{M}_{\mathrm{b} 1}$ have W / L ratios of $10 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$, and $\mathrm{M}_{\mathrm{b} 2-5}$ are appropriately sized to set the bias voltages for M_{9} and M_{10} and have 50 nA flowing through them.
a. Calculate the output resistance.
b. Calculate the small-signal differential voltage gain.
c. Calculate the slew rate.
d. Calculate the power dissipation.
e. Calculate the gain-bandwidth product, assuming that the output pole is the dominant pole.
f. Design the sizes of $M_{b 2-5}$ to appropriately bias transistors M_{9} and M_{10}.

