Differential Circuits

Dr. David W. Graham

West Virginia University
Lane Department of Computer Science and Electrical Engineering
© 2010 David W. Graham
Single-Ended vs. Differential Ended

• Single-ended signals
 – Referenced to a fixed potential (usually ground)

• Differential signals
 – Measured between two nodes that have equal and opposite signal excursions about a fixed potential
 – The two nodes [must] have equal impedances to that fixed potential
 – The fixed potential is called the “common-mode” (CM) level
 – Generally, a signal is defined as the difference between V1 and V2
 • \(V_1 - V_2 = \Delta V = V_{id} \)
Advantages of Differential Circuits

• **Common-Mode Rejection**
 – Rejects “environmental” noise (noise produced by the environment or other circuits)
 – This noise will be “common” to both signals and will eventually be subtracted out

• **Power-Supply Rejection**
 – Reduces the noise contributed by noisy power supplies

• **Increases/doubles the maximum achievable voltage swings**

• **Increased Linearity**
 – Removes even-order harmonics in fully differential systems

• **Typically simpler to bias**
Costs of Differential Circuits

• Increased area
 – In reality, the benefits far outweigh this minor detail
 – Single-ended circuits may consume more area to achieve the same performance

• Twice the power consumption
 – (Similar concepts as above)