MOS Capacitors

Dr. David W. Graham

West Virginia University Lane Department of Computer Science and Electrical Engineering © 2009 David W. Graham

1

MOS Capacitors

- Used as capacitors (sometimes)
- Other main ingredient in a MOS transistor (besides p-n junctions)
- Used in imagers (i.e. cameras) → Charge-Coupled Devices (CCD)

MOSCap Construction

Gate

Polysilicon ("poly"), a conductor
 Si0₂, an insulator
 Semiconductor

Under Bias – Flat Band

- Bands are flat
- SiO₂ provides large barrier ~3.04eV

Flat Band (V_{FB})

- Some voltage that provides flat bands
- Simply used as a reference
- May not be known ahead of time

Accumulation

- e- will not get close to the boundary (drift)
- h⁺ will accumulate at the boundary (fall into the groove)
- Lower the voltage on the "metal" or "poly" or "gate"
- Adds e⁻ to the gate
- p-type material has many h⁺
- h⁺ rush to the SiO₂ interface to balance the e⁻ on the gate
- Acts as a linear capacitor (parallel plates)
- Majority carriers "accumulate" at the SiO₂ interface

Depletion

- Raise the gate voltage
- Adds h⁺ to the gate
- Pushes the h⁺ (majority carriers) away from the interface
- Leaves behind negative ions (immobile) to counterbalance the charge
- Capacitance is composed of two parts
 - Linear oxide capacitance
 - Nonlinear depletion capacitance (capacitance over the depletion region)

Inversion

- Large number of h⁺ on the gate
- Depletion region becomes wide
- Depletion region cannot provide enough negative charges to balance positive charges
- Positive charges attract minority carrier e⁻ to the surface
- Surface becomes virtually n-type
- Minority carriers are free to move around on the surface

Regions of Inversion

- Weak Inversion
 - # of minority carriers << # of exposed ions
- Moderate Inversion
 - # of minority carriers ≈ # of exposed ions
- Strong Inversion
 - # of minority carriers >> # of exposed ions

Accumulation

- ΔQ from the small-signal AC variations
- Looks like a linear, parallel-plate capacitor

Depletion

- Looks like 2 capacitors in series
 - Linear oxide capacitor
 - Nonlinear depletion capacitance

Total capacitance varies for differing gate voltages

Inversion (Low Frequency)

- At low frequencies, there is time for the minority carriers to form at the surface
- Capacitance looks like a parallel-plate capacitor

Inversion (High Frequency)

- At higher frequencies, there is no time for minority carriers to form at the surface
- Instead, more charge is formed by varying the width of the depletion region
- Total capacitance looks like two capacitors in series

$$C_T = C_{ox} // C_D$$

Capacitance in Depletion/Inversion

- Capacitance composed of two parts
 - Linear capacitor from gate to surface potential
 - C_{ox} (Oxide Capacitance)
 - Nonlinear capacitor from surface potential to substrate
 - C_D (Depletion Capacitance)

$$C_T = C_{ox} // C_D = \frac{C_{ox}C_D}{C_{ox} + C_D}$$

Surface Potential

κ is often called the "subthreshold slope"
Relatively constant in weak inversion

• C_{D} is ~constant in weak inversion